File size: 12,669 Bytes
4730cdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2022-07-13 16:59:27
import os, sys, math, random
import cv2
import numpy as np
from pathlib import Path
from loguru import logger
from omegaconf import OmegaConf
from contextlib import nullcontext
from utils import util_net
from utils import util_image
from utils import util_common
import torch
import torch.nn.functional as F
import torch.distributed as dist
import torch.multiprocessing as mp
from datapipe.datasets import create_dataset
from utils.util_image import ImageSpliterTh
class BaseSampler:
def __init__(
self,
configs,
sf=4,
use_amp=True,
chop_size=128,
chop_stride=128,
chop_bs=1,
padding_offset=16,
seed=10000,
):
'''
Input:
configs: config, see the yaml file in folder ./configs/
sf: int, super-resolution scale
seed: int, random seed
'''
self.configs = configs
self.sf = sf
self.chop_size = chop_size
self.chop_stride = chop_stride
self.chop_bs = chop_bs
self.seed = seed
self.use_amp = use_amp
self.padding_offset = padding_offset
self.setup_dist() # setup distributed training: self.num_gpus, self.rank
self.setup_seed()
self.build_model()
def setup_seed(self, seed=None):
seed = self.seed if seed is None else seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def setup_dist(self, gpu_id=None):
num_gpus = torch.cuda.device_count()
if num_gpus > 1:
# if mp.get_start_method(allow_none=True) is None:
# mp.set_start_method('spawn')
# rank = int(os.environ['LOCAL_RANK'])
# torch.cuda.set_device(rank % num_gpus)
# dist.init_process_group(backend='nccl', init_method='env://')
rank = 0
torch.cuda.set_device(rank)
self.num_gpus = num_gpus
print("내가 추가한 거 num_gpus: ", num_gpus)
print("내가 추가한 거 self.num_gpus: ", self.num_gpus)
self.rank = int(os.environ['LOCAL_RANK']) if num_gpus > 1 else 0
print("내가 추가한 거 self.rank: ", self.rank)
def write_log(self, log_str):
if self.rank == 0:
print(log_str, flush=True)
def build_model(self):
# diffusion model
log_str = f'Building the diffusion model with length: {self.configs.diffusion.params.steps}...'
self.write_log(log_str)
self.base_diffusion = util_common.instantiate_from_config(self.configs.diffusion)
model = util_common.instantiate_from_config(self.configs.model).cuda()
ckpt_path =self.configs.model.ckpt_path
assert ckpt_path is not None
self.write_log(f'Loading Diffusion model from {ckpt_path}...')
self.load_model(model, ckpt_path)
self.freeze_model(model)
self.model = model.eval()
# autoencoder model
if self.configs.autoencoder is not None:
ckpt_path = self.configs.autoencoder.ckpt_path
assert ckpt_path is not None
self.write_log(f'Loading AutoEncoder model from {ckpt_path}...')
autoencoder = util_common.instantiate_from_config(self.configs.autoencoder).cuda()
self.load_model(autoencoder, ckpt_path)
autoencoder.eval()
self.autoencoder = autoencoder
else:
self.autoencoder = None
def load_model(self, model, ckpt_path=None):
state = torch.load(ckpt_path, map_location=f"cuda:{self.rank}")
if 'state_dict' in state:
state = state['state_dict']
util_net.reload_model(model, state)
def freeze_model(self, net):
for params in net.parameters():
params.requires_grad = False
class ResShiftSampler(BaseSampler):
def sample_func(self, y0, noise_repeat=False, mask=False):
'''
Input:
y0: n x c x h x w torch tensor, low-quality image, [-1, 1], RGB
mask: image mask for inpainting
Output:
sample: n x c x h x w, torch tensor, [-1, 1], RGB
'''
if noise_repeat:
self.setup_seed()
offset = self.padding_offset
ori_h, ori_w = y0.shape[2:]
if not (ori_h % offset == 0 and ori_w % offset == 0):
flag_pad = True
pad_h = (math.ceil(ori_h / offset)) * offset - ori_h
pad_w = (math.ceil(ori_w / offset)) * offset - ori_w
y0 = F.pad(y0, pad=(0, pad_w, 0, pad_h), mode='reflect')
else:
flag_pad = False
if self.configs.model.params.cond_lq and mask is not None:
model_kwargs={
'lq':y0,
'mask': mask,
}
elif self.configs.model.params.cond_lq:
model_kwargs={'lq':y0,}
else:
model_kwargs = None
results = self.base_diffusion.p_sample_loop(
y=y0,
model=self.model,
first_stage_model=self.autoencoder,
noise=None,
noise_repeat=noise_repeat,
clip_denoised=(self.autoencoder is None),
denoised_fn=None,
model_kwargs=model_kwargs,
progress=False,
) # This has included the decoding for latent space
if flag_pad:
results = results[:, :, :ori_h*self.sf, :ori_w*self.sf]
return results.clamp_(-1.0, 1.0)
def inference(self, in_path, out_path, mask_path=None, mask_back=True, bs=1, noise_repeat=False):
'''
Inference demo.
Input:
in_path: str, folder or image path for LQ image
out_path: str, folder save the results
bs: int, default bs=1, bs % num_gpus == 0
mask_path: image mask for inpainting
'''
def _process_per_image(im_lq_tensor, mask=None):
'''
Input:
im_lq_tensor: b x c x h x w, torch tensor, [-1, 1], RGB
mask: image mask for inpainting, [-1, 1], 1 for unknown area
Output:
im_sr: h x w x c, numpy array, [0,1], RGB
'''
context = torch.cuda.amp.autocast if self.use_amp else nullcontext
if im_lq_tensor.shape[2] > self.chop_size or im_lq_tensor.shape[3] > self.chop_size:
if mask is not None:
im_lq_tensor = torch.cat([im_lq_tensor, mask], dim=1)
im_spliter = ImageSpliterTh(
im_lq_tensor,
self.chop_size,
stride=self.chop_stride,
sf=self.sf,
extra_bs=self.chop_bs,
)
for im_lq_pch, index_infos in im_spliter:
if mask is not None:
im_lq_pch, mask_pch = im_lq_pch[:, :-1], im_lq_pch[:, -1:,]
else:
mask_pch = None
with context():
im_sr_pch = self.sample_func(
im_lq_pch,
noise_repeat=noise_repeat,
mask=mask_pch,
) # 1 x c x h x w, [-1, 1]
im_spliter.update(im_sr_pch, index_infos)
im_sr_tensor = im_spliter.gather()
else:
# print(im_lq_tensor.shape)
with context():
im_sr_tensor = self.sample_func(
im_lq_tensor,
noise_repeat=noise_repeat,
mask=mask,
) # 1 x c x h x w, [-1, 1]
im_sr_tensor = im_sr_tensor * 0.5 + 0.5
if mask_back and mask is not None:
mask = mask * 0.5 + 0.5
im_lq_tensor = im_lq_tensor * 0.5 + 0.5
im_sr_tensor = im_sr_tensor * mask + im_lq_tensor * (1 - mask)
return im_sr_tensor
in_path = Path(in_path) if not isinstance(in_path, Path) else in_path
out_path = Path(out_path) if not isinstance(out_path, Path) else out_path
if self.rank == 0:
assert in_path.exists()
if not out_path.exists():
out_path.mkdir(parents=True)
if self.num_gpus > 1:
dist.barrier()
if in_path.is_dir():
if mask_path is None:
data_config = {'type': 'base',
'params': {'dir_path': str(in_path),
'transform_type': 'default',
'transform_kwargs': {
'mean': 0.5,
'std': 0.5,
},
'need_path': True,
'recursive': True,
'length': None,
}
}
else:
data_config = {'type': 'inpainting_val',
'params': {'lq_path': str(in_path),
'mask_path': mask_path,
'transform_type': 'default',
'transform_kwargs': {
'mean': 0.5,
'std': 0.5,
},
'need_path': True,
'recursive': True,
'im_exts': ['png', 'jpg', 'jpeg', 'JPEG', 'bmp', 'PNG'],
'length': None,
}
}
dataset = create_dataset(data_config)
self.write_log(f'Find {len(dataset)} images in {in_path}')
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=bs,
shuffle=False,
drop_last=False,
)
for data in dataloader:
micro_batchsize = math.ceil(bs / self.num_gpus)
ind_start = self.rank * micro_batchsize
ind_end = ind_start + micro_batchsize
micro_data = {key:value[ind_start:ind_end] for key,value in data.items()}
if micro_data['lq'].shape[0] > 0:
results = _process_per_image(
micro_data['lq'].cuda(),
mask=micro_data['mask'].cuda() if 'mask' in micro_data else None,
) # b x h x w x c, [0, 1], RGB
for jj in range(results.shape[0]):
im_sr = util_image.tensor2img(results[jj], rgb2bgr=True, min_max=(0.0, 1.0))
im_name = Path(micro_data['path'][jj]).stem
im_path = out_path / f"{im_name}.png"
util_image.imwrite(im_sr, im_path, chn='bgr', dtype_in='uint8')
if self.num_gpus > 1:
dist.barrier()
else:
im_lq = util_image.imread(in_path, chn='rgb', dtype='float32') # h x w x c
im_lq_tensor = util_image.img2tensor(im_lq).cuda() # 1 x c x h x w
if mask_path is not None:
im_mask = util_image.imread(mask_path, chn='gray', dtype='float32')[:,:, None] # h x w x 1
im_mask_tensor = util_image.img2tensor(im_mask).cuda() # 1 x c x h x w
im_sr_tensor = _process_per_image(
(im_lq_tensor - 0.5) / 0.5,
mask=(im_mask_tensor - 0.5) / 0.5 if mask_path is not None else None,
)
im_sr = util_image.tensor2img(im_sr_tensor, rgb2bgr=True, min_max=(0.0, 1.0))
im_path = out_path / f"{in_path.stem}.png"
util_image.imwrite(im_sr, im_path, chn='bgr', dtype_in='uint8')
self.write_log(f"Processing done, enjoy the results in {str(out_path)}")
if __name__ == '__main__':
pass
|