File size: 1,639 Bytes
4730cdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import math
import torch
from torch.utils.data.sampler import Sampler


class EnlargedSampler(Sampler):
    """Sampler that restricts data loading to a subset of the dataset.

    Modified from torch.utils.data.distributed.DistributedSampler
    Support enlarging the dataset for iteration-based training, for saving
    time when restart the dataloader after each epoch

    Args:
        dataset (torch.utils.data.Dataset): Dataset used for sampling.
        num_replicas (int | None): Number of processes participating in
            the training. It is usually the world_size.
        rank (int | None): Rank of the current process within num_replicas.
        ratio (int): Enlarging ratio. Default: 1.
    """

    def __init__(self, dataset, num_replicas, rank, ratio=1):
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
        self.num_samples = math.ceil(len(self.dataset) * ratio / self.num_replicas)
        self.total_size = self.num_samples * self.num_replicas

    def __iter__(self):
        # deterministically shuffle based on epoch
        g = torch.Generator()
        g.manual_seed(self.epoch)
        indices = torch.randperm(self.total_size, generator=g).tolist()

        dataset_size = len(self.dataset)
        indices = [v % dataset_size for v in indices]

        # subsample
        indices = indices[self.rank:self.total_size:self.num_replicas]
        assert len(indices) == self.num_samples

        return iter(indices)

    def __len__(self):
        return self.num_samples

    def set_epoch(self, epoch):
        self.epoch = epoch