File size: 11,821 Bytes
4730cdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import cv2
import math
import numpy as np
import os
import queue
import threading
import torch
from basicsr.utils.download_util import load_file_from_url
from torch.nn import functional as F

# ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))


class RealESRGANer():
    """A helper class for upsampling images with RealESRGAN.

    Args:
        scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4.
        model_path (str): The path to the pretrained model. It can be urls (will first download it automatically).
        model (nn.Module): The defined network. Default: None.
        tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop
            input images into tiles, and then process each of them. Finally, they will be merged into one image.
            0 denotes for do not use tile. Default: 0.
        tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10.
        pre_pad (int): Pad the input images to avoid border artifacts. Default: 10.
        half (float): Whether to use half precision during inference. Default: False.
    """

    def __init__(self,
                 scale,
                 model_path,
                 model=None,
                 tile=0,
                 tile_pad=10,
                 pre_pad=10,
                 half=False,
                 device=None,
                 gpu_id=None):
        self.scale = scale
        self.tile_size = tile
        self.tile_pad = tile_pad
        self.pre_pad = pre_pad
        self.mod_scale = None
        self.half = half

        # initialize model
        if gpu_id:
            self.device = torch.device(
                f'cuda:{gpu_id}' if torch.cuda.is_available() else 'cpu') if device is None else device
        else:
            self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
        # if the model_path starts with https, it will first download models to the folder: realesrgan/weights
        if model_path.startswith('https://'):
            model_path = load_file_from_url(
                url=model_path, model_dir=os.path.join('weights/realesrgan'), progress=True, file_name=None)
        loadnet = torch.load(model_path, map_location=torch.device('cpu'))
        # prefer to use params_ema
        if 'params_ema' in loadnet:
            keyname = 'params_ema'
        else:
            keyname = 'params'
        model.load_state_dict(loadnet[keyname], strict=True)
        model.eval()
        self.model = model.to(self.device)
        if self.half:
            self.model = self.model.half()

    def pre_process(self, img):
        """Pre-process, such as pre-pad and mod pad, so that the images can be divisible
        """
        img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float()
        self.img = img.unsqueeze(0).to(self.device)
        if self.half:
            self.img = self.img.half()

        # pre_pad
        if self.pre_pad != 0:
            self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect')
        # mod pad for divisible borders
        if self.scale == 2:
            self.mod_scale = 2
        elif self.scale == 1:
            self.mod_scale = 4
        if self.mod_scale is not None:
            self.mod_pad_h, self.mod_pad_w = 0, 0
            _, _, h, w = self.img.size()
            if (h % self.mod_scale != 0):
                self.mod_pad_h = (self.mod_scale - h % self.mod_scale)
            if (w % self.mod_scale != 0):
                self.mod_pad_w = (self.mod_scale - w % self.mod_scale)
            self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect')

    def process(self):
        # model inference
        self.output = self.model(self.img)

    def tile_process(self):
        """It will first crop input images to tiles, and then process each tile.
        Finally, all the processed tiles are merged into one images.

        Modified from: https://github.com/ata4/esrgan-launcher
        """
        batch, channel, height, width = self.img.shape
        output_height = height * self.scale
        output_width = width * self.scale
        output_shape = (batch, channel, output_height, output_width)

        # start with black image
        self.output = self.img.new_zeros(output_shape)
        tiles_x = math.ceil(width / self.tile_size)
        tiles_y = math.ceil(height / self.tile_size)

        # loop over all tiles
        for y in range(tiles_y):
            for x in range(tiles_x):
                # extract tile from input image
                ofs_x = x * self.tile_size
                ofs_y = y * self.tile_size
                # input tile area on total image
                input_start_x = ofs_x
                input_end_x = min(ofs_x + self.tile_size, width)
                input_start_y = ofs_y
                input_end_y = min(ofs_y + self.tile_size, height)

                # input tile area on total image with padding
                input_start_x_pad = max(input_start_x - self.tile_pad, 0)
                input_end_x_pad = min(input_end_x + self.tile_pad, width)
                input_start_y_pad = max(input_start_y - self.tile_pad, 0)
                input_end_y_pad = min(input_end_y + self.tile_pad, height)

                # input tile dimensions
                input_tile_width = input_end_x - input_start_x
                input_tile_height = input_end_y - input_start_y
                tile_idx = y * tiles_x + x + 1
                input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad]

                # upscale tile
                try:
                    with torch.no_grad():
                        output_tile = self.model(input_tile)
                except RuntimeError as error:
                    print('Error', error)
                # print(f'\tTile {tile_idx}/{tiles_x * tiles_y}')

                # output tile area on total image
                output_start_x = input_start_x * self.scale
                output_end_x = input_end_x * self.scale
                output_start_y = input_start_y * self.scale
                output_end_y = input_end_y * self.scale

                # output tile area without padding
                output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale
                output_end_x_tile = output_start_x_tile + input_tile_width * self.scale
                output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale
                output_end_y_tile = output_start_y_tile + input_tile_height * self.scale

                # put tile into output image
                self.output[:, :, output_start_y:output_end_y,
                            output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile,
                                                                       output_start_x_tile:output_end_x_tile]

    def post_process(self):
        # remove extra pad
        if self.mod_scale is not None:
            _, _, h, w = self.output.size()
            self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale]
        # remove prepad
        if self.pre_pad != 0:
            _, _, h, w = self.output.size()
            self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale]
        return self.output

    @torch.no_grad()
    def enhance(self, img, outscale=None, alpha_upsampler='realesrgan'):
        h_input, w_input = img.shape[0:2]
        # img: numpy
        img = img.astype(np.float32)
        if np.max(img) > 256:  # 16-bit image
            max_range = 65535
            print('\tInput is a 16-bit image')
        else:
            max_range = 255
        img = img / max_range
        if len(img.shape) == 2:  # gray image
            img_mode = 'L'
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
        elif img.shape[2] == 4:  # RGBA image with alpha channel
            img_mode = 'RGBA'
            alpha = img[:, :, 3]
            img = img[:, :, 0:3]
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            if alpha_upsampler == 'realesrgan':
                alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB)
        else:
            img_mode = 'RGB'
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

        # ------------------- process image (without the alpha channel) ------------------- #
        self.pre_process(img)
        if self.tile_size > 0:
            self.tile_process()
        else:
            self.process()
        output_img = self.post_process()
        output_img = output_img.data.squeeze().float().cpu().clamp_(0, 1).numpy()
        output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0))
        if img_mode == 'L':
            output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)

        # ------------------- process the alpha channel if necessary ------------------- #
        if img_mode == 'RGBA':
            if alpha_upsampler == 'realesrgan':
                self.pre_process(alpha)
                if self.tile_size > 0:
                    self.tile_process()
                else:
                    self.process()
                output_alpha = self.post_process()
                output_alpha = output_alpha.data.squeeze().float().cpu().clamp_(0, 1).numpy()
                output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0))
                output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY)
            else:  # use the cv2 resize for alpha channel
                h, w = alpha.shape[0:2]
                output_alpha = cv2.resize(alpha, (w * self.scale, h * self.scale), interpolation=cv2.INTER_LINEAR)

            # merge the alpha channel
            output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA)
            output_img[:, :, 3] = output_alpha

        # ------------------------------ return ------------------------------ #
        if max_range == 65535:  # 16-bit image
            output = (output_img * 65535.0).round().astype(np.uint16)
        else:
            output = (output_img * 255.0).round().astype(np.uint8)

        if outscale is not None and outscale != float(self.scale):
            output = cv2.resize(
                output, (
                    int(w_input * outscale),
                    int(h_input * outscale),
                ), interpolation=cv2.INTER_LANCZOS4)

        return output, img_mode


class PrefetchReader(threading.Thread):
    """Prefetch images.

    Args:
        img_list (list[str]): A image list of image paths to be read.
        num_prefetch_queue (int): Number of prefetch queue.
    """

    def __init__(self, img_list, num_prefetch_queue):
        super().__init__()
        self.que = queue.Queue(num_prefetch_queue)
        self.img_list = img_list

    def run(self):
        for img_path in self.img_list:
            img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
            self.que.put(img)

        self.que.put(None)

    def __next__(self):
        next_item = self.que.get()
        if next_item is None:
            raise StopIteration
        return next_item

    def __iter__(self):
        return self


class IOConsumer(threading.Thread):

    def __init__(self, opt, que, qid):
        super().__init__()
        self._queue = que
        self.qid = qid
        self.opt = opt

    def run(self):
        while True:
            msg = self._queue.get()
            if isinstance(msg, str) and msg == 'quit':
                break

            output = msg['output']
            save_path = msg['save_path']
            cv2.imwrite(save_path, output)
        print(f'IO worker {self.qid} is done.')