File size: 5,943 Bytes
4730cdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
from abc import ABC, abstractmethod
import random
import numpy as np
import torch as th
import torch.distributed as dist
def create_named_schedule_sampler(name, diffusion):
"""
Create a ScheduleSampler from a library of pre-defined samplers.
:param name: the name of the sampler.
:param diffusion: the diffusion object to sample for.
"""
if name == "uniform":
return UniformSampler(diffusion)
elif name == "loss-second-moment":
return LossSecondMomentResampler(diffusion)
else:
raise NotImplementedError(f"unknown schedule sampler: {name}")
class ScheduleSampler(ABC):
"""
A distribution over timesteps in the diffusion process, intended to reduce
variance of the objective.
By default, samplers perform unbiased importance sampling, in which the
objective's mean is unchanged.
However, subclasses may override sample() to change how the resampled
terms are reweighted, allowing for actual changes in the objective.
"""
@abstractmethod
def weights(self):
"""
Get a numpy array of weights, one per diffusion step.
The weights needn't be normalized, but must be positive.
"""
def sample(self, batch_size, device):
"""
Importance-sample timesteps for a batch.
:param batch_size: the number of timesteps.
:param device: the torch device to save to.
:return: a tuple (timesteps, weights):
- timesteps: a tensor of timestep indices.
- weights: a tensor of weights to scale the resulting losses.
"""
w = self.weights()
p = w / th.sum(w)
indices_np = random.choice(len(p), size=(batch_size,), p=p)
indices = th.from_numpy(indices_np).long().to(device)
weights_np = 1 / (len(p) * p[indices_np])
weights = th.from_numpy(weights_np).float().to(device)
return indices, weights
class UniformSampler:
def __init__(self, num_timesteps):
self.num_timesteps = num_timesteps
self._weights = th.ones([num_timesteps])
def sample(self, batch_size, device, use_fp16=False):
indices = th.randint(0, self.num_timesteps, (batch_size, ), device=device)
if use_fp16:
weights = th.ones_like(indices).half()
else:
weights = th.ones_like(indices).float()
return indices, weights
class LossAwareSampler(ScheduleSampler):
def update_with_local_losses(self, local_ts, local_losses):
"""
Update the reweighting using losses from a model.
Call this method from each rank with a batch of timesteps and the
corresponding losses for each of those timesteps.
This method will perform synchronization to make sure all of the ranks
maintain the exact same reweighting.
:param local_ts: an integer Tensor of timesteps.
:param local_losses: a 1D Tensor of losses.
"""
batch_sizes = [
th.tensor([0], dtype=th.int32, device=local_ts.device)
for _ in range(dist.get_world_size())
]
dist.all_gather(
batch_sizes,
th.tensor([len(local_ts)], dtype=th.int32, device=local_ts.device),
)
# Pad all_gather batches to be the maximum batch size.
batch_sizes = [x.item() for x in batch_sizes]
max_bs = max(batch_sizes)
timestep_batches = [th.zeros(max_bs).to(local_ts) for bs in batch_sizes]
loss_batches = [th.zeros(max_bs).to(local_losses) for bs in batch_sizes]
dist.all_gather(timestep_batches, local_ts)
dist.all_gather(loss_batches, local_losses)
timesteps = [
x.item() for y, bs in zip(timestep_batches, batch_sizes) for x in y[:bs]
]
losses = [x.item() for y, bs in zip(loss_batches, batch_sizes) for x in y[:bs]]
self.update_with_all_losses(timesteps, losses)
@abstractmethod
def update_with_all_losses(self, ts, losses):
"""
Update the reweighting using losses from a model.
Sub-classes should override this method to update the reweighting
using losses from the model.
This method directly updates the reweighting without synchronizing
between workers. It is called by update_with_local_losses from all
ranks with identical arguments. Thus, it should have deterministic
behavior to maintain state across workers.
:param ts: a list of int timesteps.
:param losses: a list of float losses, one per timestep.
"""
class LossSecondMomentResampler(LossAwareSampler):
def __init__(self, diffusion, history_per_term=10, uniform_prob=0.001):
self.diffusion = diffusion
self.history_per_term = history_per_term
self.uniform_prob = uniform_prob
self._loss_history = np.zeros(
[diffusion.num_timesteps, history_per_term], dtype=np.float64
)
self._loss_counts = np.zeros([diffusion.num_timesteps], dtype=np.int)
def weights(self):
if not self._warmed_up():
return np.ones([self.diffusion.num_timesteps], dtype=np.float64)
weights = np.sqrt(np.mean(self._loss_history ** 2, axis=-1))
weights /= np.sum(weights)
weights *= 1 - self.uniform_prob
weights += self.uniform_prob / len(weights)
return weights
def update_with_all_losses(self, ts, losses):
for t, loss in zip(ts, losses):
if self._loss_counts[t] == self.history_per_term:
# Shift out the oldest loss term.
self._loss_history[t, :-1] = self._loss_history[t, 1:]
self._loss_history[t, -1] = loss
else:
self._loss_history[t, self._loss_counts[t]] = loss
self._loss_counts[t] += 1
def _warmed_up(self):
return (self._loss_counts == self.history_per_term).all()
|