File size: 16,270 Bytes
4730cdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import cv2
import math
import numpy as np
import os
import os.path as osp
import random
import time
import torch
from pathlib import Path
import albumentations
import torch.nn.functional as F
from torch.utils import data as data
from basicsr.utils import DiffJPEG
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
from basicsr.data.transforms import augment
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
from basicsr.utils.registry import DATASET_REGISTRY
from basicsr.utils.img_process_util import filter2D
from basicsr.data.transforms import paired_random_crop
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
def readline_txt(txt_file):
txt_file = [txt_file, ] if isinstance(txt_file, str) else txt_file
out = []
for txt_file_current in txt_file:
with open(txt_file_current, 'r') as ff:
out.extend([x[:-1] for x in ff.readlines()])
return out
@DATASET_REGISTRY.register(suffix='basicsr')
class RealESRGANDataset(data.Dataset):
"""Dataset used for Real-ESRGAN model:
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
It loads gt (Ground-Truth) images, and augments them.
It also generates blur kernels and sinc kernels for generating low-quality images.
Note that the low-quality images are processed in tensors on GPUS for faster processing.
Args:
opt (dict): Config for train datasets. It contains the following keys:
dataroot_gt (str): Data root path for gt.
meta_info (str): Path for meta information file.
io_backend (dict): IO backend type and other kwarg.
use_hflip (bool): Use horizontal flips.
use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
Please see more options in the codes.
"""
def __init__(self, opt, mode='training'):
super(RealESRGANDataset, self).__init__()
self.opt = opt
self.file_client = None
self.io_backend_opt = opt['io_backend']
# file client (lmdb io backend)
self.paths = []
if 'dir_paths' in opt:
for current_dir in opt['dir_paths']:
for current_ext in opt['im_exts']:
self.paths.extend(sorted([str(x) for x in Path(current_dir).glob(f'**/*.{current_ext}')]))
if 'txt_file_path' in opt:
for current_txt in opt['txt_file_path']:
self.paths.extend(readline_txt(current_txt))
if 'length' in opt:
self.paths = random.sample(self.paths, opt['length'])
# blur settings for the first degradation
self.blur_kernel_size = opt['blur_kernel_size']
self.kernel_list = opt['kernel_list']
self.kernel_prob = opt['kernel_prob'] # a list for each kernel probability
self.blur_sigma = opt['blur_sigma']
self.betag_range = opt['betag_range'] # betag used in generalized Gaussian blur kernels
self.betap_range = opt['betap_range'] # betap used in plateau blur kernels
self.sinc_prob = opt['sinc_prob'] # the probability for sinc filters
# blur settings for the second degradation
self.blur_kernel_size2 = opt['blur_kernel_size2']
self.kernel_list2 = opt['kernel_list2']
self.kernel_prob2 = opt['kernel_prob2']
self.blur_sigma2 = opt['blur_sigma2']
self.betag_range2 = opt['betag_range2']
self.betap_range2 = opt['betap_range2']
self.sinc_prob2 = opt['sinc_prob2']
# a final sinc filter
self.final_sinc_prob = opt['final_sinc_prob']
self.kernel_range1 = [x for x in range(3, opt['blur_kernel_size'], 2)] # kernel size ranges from 7 to 21
self.kernel_range2 = [x for x in range(3, opt['blur_kernel_size2'], 2)] # kernel size ranges from 7 to 21
# TODO: kernel range is now hard-coded, should be in the configure file
# convolving with pulse tensor brings no blurry effect
self.pulse_tensor = torch.zeros(opt['blur_kernel_size2'], opt['blur_kernel_size2']).float()
self.pulse_tensor[opt['blur_kernel_size2']//2, opt['blur_kernel_size2']//2] = 1
self.mode = mode
self.rescale_gt = opt['rescale_gt']
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
# -------------------------------- Load gt images -------------------------------- #
# Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32.
gt_path = self.paths[index]
# avoid errors caused by high latency in reading files
retry = 3
while retry > 0:
try:
img_bytes = self.file_client.get(gt_path, 'gt')
img_gt = imfrombytes(img_bytes, float32=True)
# except (IOError, OSError, AttributeError) as e:
except:
# logger = get_root_logger()
# logger.warn(f'File client error: {e}, remaining retry times: {retry - 1}')
# change another file to read
index = random.randint(0, self.__len__())
gt_path = self.paths[index]
time.sleep(1) # sleep 1s for occasional server congestion
# else:
# break
finally:
retry -= 1
if self.mode == 'testing':
if not hasattr(self, 'test_aug'):
self.test_aug = albumentations.Compose([
albumentations.SmallestMaxSize(max_size=self.opt['gt_size']),
albumentations.CenterCrop(self.opt['gt_size'], self.opt['gt_size']),
])
img_gt = self.test_aug(image=img_gt)['image']
elif self.mode == 'training':
pass
else:
raise ValueError(f'Unexpected value {self.mode} for mode parameter')
if self.mode == 'training':
# -------------------- Do augmentation for training: flip, rotation -------------------- #
img_gt = augment(img_gt, self.opt['use_hflip'], self.opt['use_rot'])
# crop or pad to 400
# TODO: 400 is hard-coded. You may change it accordingly
h, w = img_gt.shape[0:2]
if self.rescale_gt:
crop_pad_size = max(min(h, w), self.opt['gt_size'])
else:
crop_pad_size = self.opt['crop_pad_size']
# pad
# if h < crop_pad_size or w < crop_pad_size:
# pad_h = max(0, crop_pad_size - h)
# pad_w = max(0, crop_pad_size - w)
# img_gt = cv2.copyMakeBorder(img_gt, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101)
while h < crop_pad_size or w < crop_pad_size:
pad_h = min(max(0, crop_pad_size - h), h)
pad_w = min(max(0, crop_pad_size - w), w)
img_gt = cv2.copyMakeBorder(img_gt, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101)
h, w = img_gt.shape[0:2]
# crop
if img_gt.shape[0] > crop_pad_size or img_gt.shape[1] > crop_pad_size:
h, w = img_gt.shape[0:2]
# randomly choose top and left coordinates
top = random.randint(0, h - crop_pad_size)
left = random.randint(0, w - crop_pad_size)
img_gt = img_gt[top:top + crop_pad_size, left:left + crop_pad_size, ...]
if self.rescale_gt and crop_pad_size != self.opt['gt_size']:
img_gt = cv2.resize(img_gt, dsize=(self.opt['gt_size'],)*2, interpolation=cv2.INTER_AREA)
elif self.mode == 'testing':
pass
else:
raise ValueError(f'Unexpected value {self.mode} for mode parameter')
# ------------------------ Generate kernels (used in the first degradation) ------------------------ #
kernel_size = random.choice(self.kernel_range1)
if np.random.uniform() < self.opt['sinc_prob']:
# this sinc filter setting is for kernels ranging from [7, 21]
if kernel_size < 13:
omega_c = np.random.uniform(np.pi / 3, np.pi)
else:
omega_c = np.random.uniform(np.pi / 5, np.pi)
kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
else:
kernel = random_mixed_kernels(
self.kernel_list,
self.kernel_prob,
kernel_size,
self.blur_sigma,
self.blur_sigma, [-math.pi, math.pi],
self.betag_range,
self.betap_range,
noise_range=None)
# pad kernel
pad_size = (self.blur_kernel_size - kernel_size) // 2
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
# ------------------------ Generate kernels (used in the second degradation) ------------------------ #
kernel_size = random.choice(self.kernel_range2)
if np.random.uniform() < self.opt['sinc_prob2']:
if kernel_size < 13:
omega_c = np.random.uniform(np.pi / 3, np.pi)
else:
omega_c = np.random.uniform(np.pi / 5, np.pi)
kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
else:
kernel2 = random_mixed_kernels(
self.kernel_list2,
self.kernel_prob2,
kernel_size,
self.blur_sigma2,
self.blur_sigma2, [-math.pi, math.pi],
self.betag_range2,
self.betap_range2,
noise_range=None)
# pad kernel
pad_size = (self.blur_kernel_size2 - kernel_size) // 2
kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))
# ------------------------------------- the final sinc kernel ------------------------------------- #
if np.random.uniform() < self.opt['final_sinc_prob']:
kernel_size = random.choice(self.kernel_range2)
omega_c = np.random.uniform(np.pi / 3, np.pi)
sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=self.blur_kernel_size2)
sinc_kernel = torch.FloatTensor(sinc_kernel)
else:
sinc_kernel = self.pulse_tensor
# BGR to RGB, HWC to CHW, numpy to tensor
img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0]
kernel = torch.FloatTensor(kernel)
kernel2 = torch.FloatTensor(kernel2)
return_d = {'gt': img_gt, 'kernel1': kernel, 'kernel2': kernel2, 'sinc_kernel': sinc_kernel, 'gt_path': gt_path}
return return_d
def __len__(self):
return len(self.paths)
def degrade_fun(self, conf_degradation, im_gt, kernel1, kernel2, sinc_kernel):
if not hasattr(self, 'jpeger'):
self.jpeger = DiffJPEG(differentiable=False) # simulate JPEG compression artifacts
ori_h, ori_w = im_gt.size()[2:4]
sf = conf_degradation.sf
# ----------------------- The first degradation process ----------------------- #
# blur
out = filter2D(im_gt, kernel1)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
conf_degradation['resize_prob'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, conf_degradation['resize_range'][1])
elif updown_type == 'down':
scale = random.uniform(conf_degradation['resize_range'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(out, scale_factor=scale, mode=mode)
# add noise
gray_noise_prob = conf_degradation['gray_noise_prob']
if random.random() < conf_degradation['gaussian_noise_prob']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=conf_degradation['noise_range'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=conf_degradation['poisson_scale_range'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*conf_degradation['jpeg_range'])
out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts
out = self.jpeger(out, quality=jpeg_p)
# ----------------------- The second degradation process ----------------------- #
# blur
if random.random() < conf_degradation['second_order_prob']:
if random.random() < conf_degradation['second_blur_prob']:
out = filter2D(out, kernel2)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
conf_degradation['resize_prob2'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, conf_degradation['resize_range2'][1])
elif updown_type == 'down':
scale = random.uniform(conf_degradation['resize_range2'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(int(ori_h / sf * scale), int(ori_w / sf * scale)),
mode=mode,
)
# add noise
gray_noise_prob = conf_degradation['gray_noise_prob2']
if random.random() < conf_degradation['gaussian_noise_prob2']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=conf_degradation['noise_range2'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=conf_degradation['poisson_scale_range2'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False,
)
# JPEG compression + the final sinc filter
# We also need to resize images to desired sizes. We group [resize back + sinc filter] together
# as one operation.
# We consider two orders:
# 1. [resize back + sinc filter] + JPEG compression
# 2. JPEG compression + [resize back + sinc filter]
# Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
if random.random() < 0.5:
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(ori_h // sf, ori_w // sf),
mode=mode,
)
out = filter2D(out, sinc_kernel)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*conf_degradation['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
else:
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*conf_degradation['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(ori_h // sf, ori_w // sf),
mode=mode,
)
out = filter2D(out, sinc_kernel)
# clamp and round
im_lq = torch.clamp((out * 255.0).round(), 0, 255) / 255.
return {'lq':im_lq.contiguous(), 'gt':im_gt}
|