File size: 15,157 Bytes
4730cdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import numpy as np
import random
import torch
from pathlib import Path
from torch.utils import data as data
from basicsr.data.transforms import augment, paired_random_crop
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
from basicsr.utils.flow_util import dequantize_flow
from basicsr.utils.registry import DATASET_REGISTRY
@DATASET_REGISTRY.register()
class REDSDataset(data.Dataset):
"""REDS dataset for training.
The keys are generated from a meta info txt file.
basicsr/data/meta_info/meta_info_REDS_GT.txt
Each line contains:
1. subfolder (clip) name; 2. frame number; 3. image shape, separated by
a white space.
Examples:
000 100 (720,1280,3)
001 100 (720,1280,3)
...
Key examples: "000/00000000"
GT (gt): Ground-Truth;
LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames.
Args:
opt (dict): Config for train dataset. It contains the following keys:
dataroot_gt (str): Data root path for gt.
dataroot_lq (str): Data root path for lq.
dataroot_flow (str, optional): Data root path for flow.
meta_info_file (str): Path for meta information file.
val_partition (str): Validation partition types. 'REDS4' or 'official'.
io_backend (dict): IO backend type and other kwarg.
num_frame (int): Window size for input frames.
gt_size (int): Cropped patched size for gt patches.
interval_list (list): Interval list for temporal augmentation.
random_reverse (bool): Random reverse input frames.
use_hflip (bool): Use horizontal flips.
use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
scale (bool): Scale, which will be added automatically.
"""
def __init__(self, opt):
super(REDSDataset, self).__init__()
self.opt = opt
self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq'])
self.flow_root = Path(opt['dataroot_flow']) if opt['dataroot_flow'] is not None else None
assert opt['num_frame'] % 2 == 1, (f'num_frame should be odd number, but got {opt["num_frame"]}')
self.num_frame = opt['num_frame']
self.num_half_frames = opt['num_frame'] // 2
self.keys = []
with open(opt['meta_info_file'], 'r') as fin:
for line in fin:
folder, frame_num, _ = line.split(' ')
self.keys.extend([f'{folder}/{i:08d}' for i in range(int(frame_num))])
# remove the video clips used in validation
if opt['val_partition'] == 'REDS4':
val_partition = ['000', '011', '015', '020']
elif opt['val_partition'] == 'official':
val_partition = [f'{v:03d}' for v in range(240, 270)]
else:
raise ValueError(f'Wrong validation partition {opt["val_partition"]}.'
f"Supported ones are ['official', 'REDS4'].")
self.keys = [v for v in self.keys if v.split('/')[0] not in val_partition]
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.is_lmdb = False
if self.io_backend_opt['type'] == 'lmdb':
self.is_lmdb = True
if self.flow_root is not None:
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root, self.flow_root]
self.io_backend_opt['client_keys'] = ['lq', 'gt', 'flow']
else:
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root]
self.io_backend_opt['client_keys'] = ['lq', 'gt']
# temporal augmentation configs
self.interval_list = opt['interval_list']
self.random_reverse = opt['random_reverse']
interval_str = ','.join(str(x) for x in opt['interval_list'])
logger = get_root_logger()
logger.info(f'Temporal augmentation interval list: [{interval_str}]; '
f'random reverse is {self.random_reverse}.')
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
scale = self.opt['scale']
gt_size = self.opt['gt_size']
key = self.keys[index]
clip_name, frame_name = key.split('/') # key example: 000/00000000
center_frame_idx = int(frame_name)
# determine the neighboring frames
interval = random.choice(self.interval_list)
# ensure not exceeding the borders
start_frame_idx = center_frame_idx - self.num_half_frames * interval
end_frame_idx = center_frame_idx + self.num_half_frames * interval
# each clip has 100 frames starting from 0 to 99
while (start_frame_idx < 0) or (end_frame_idx > 99):
center_frame_idx = random.randint(0, 99)
start_frame_idx = (center_frame_idx - self.num_half_frames * interval)
end_frame_idx = center_frame_idx + self.num_half_frames * interval
frame_name = f'{center_frame_idx:08d}'
neighbor_list = list(range(start_frame_idx, end_frame_idx + 1, interval))
# random reverse
if self.random_reverse and random.random() < 0.5:
neighbor_list.reverse()
assert len(neighbor_list) == self.num_frame, (f'Wrong length of neighbor list: {len(neighbor_list)}')
# get the GT frame (as the center frame)
if self.is_lmdb:
img_gt_path = f'{clip_name}/{frame_name}'
else:
img_gt_path = self.gt_root / clip_name / f'{frame_name}.png'
img_bytes = self.file_client.get(img_gt_path, 'gt')
img_gt = imfrombytes(img_bytes, float32=True)
# get the neighboring LQ frames
img_lqs = []
for neighbor in neighbor_list:
if self.is_lmdb:
img_lq_path = f'{clip_name}/{neighbor:08d}'
else:
img_lq_path = self.lq_root / clip_name / f'{neighbor:08d}.png'
img_bytes = self.file_client.get(img_lq_path, 'lq')
img_lq = imfrombytes(img_bytes, float32=True)
img_lqs.append(img_lq)
# get flows
if self.flow_root is not None:
img_flows = []
# read previous flows
for i in range(self.num_half_frames, 0, -1):
if self.is_lmdb:
flow_path = f'{clip_name}/{frame_name}_p{i}'
else:
flow_path = (self.flow_root / clip_name / f'{frame_name}_p{i}.png')
img_bytes = self.file_client.get(flow_path, 'flow')
cat_flow = imfrombytes(img_bytes, flag='grayscale', float32=False) # uint8, [0, 255]
dx, dy = np.split(cat_flow, 2, axis=0)
flow = dequantize_flow(dx, dy, max_val=20, denorm=False) # we use max_val 20 here.
img_flows.append(flow)
# read next flows
for i in range(1, self.num_half_frames + 1):
if self.is_lmdb:
flow_path = f'{clip_name}/{frame_name}_n{i}'
else:
flow_path = (self.flow_root / clip_name / f'{frame_name}_n{i}.png')
img_bytes = self.file_client.get(flow_path, 'flow')
cat_flow = imfrombytes(img_bytes, flag='grayscale', float32=False) # uint8, [0, 255]
dx, dy = np.split(cat_flow, 2, axis=0)
flow = dequantize_flow(dx, dy, max_val=20, denorm=False) # we use max_val 20 here.
img_flows.append(flow)
# for random crop, here, img_flows and img_lqs have the same
# spatial size
img_lqs.extend(img_flows)
# randomly crop
img_gt, img_lqs = paired_random_crop(img_gt, img_lqs, gt_size, scale, img_gt_path)
if self.flow_root is not None:
img_lqs, img_flows = img_lqs[:self.num_frame], img_lqs[self.num_frame:]
# augmentation - flip, rotate
img_lqs.append(img_gt)
if self.flow_root is not None:
img_results, img_flows = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'], img_flows)
else:
img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'])
img_results = img2tensor(img_results)
img_lqs = torch.stack(img_results[0:-1], dim=0)
img_gt = img_results[-1]
if self.flow_root is not None:
img_flows = img2tensor(img_flows)
# add the zero center flow
img_flows.insert(self.num_half_frames, torch.zeros_like(img_flows[0]))
img_flows = torch.stack(img_flows, dim=0)
# img_lqs: (t, c, h, w)
# img_flows: (t, 2, h, w)
# img_gt: (c, h, w)
# key: str
if self.flow_root is not None:
return {'lq': img_lqs, 'flow': img_flows, 'gt': img_gt, 'key': key}
else:
return {'lq': img_lqs, 'gt': img_gt, 'key': key}
def __len__(self):
return len(self.keys)
@DATASET_REGISTRY.register()
class REDSRecurrentDataset(data.Dataset):
"""REDS dataset for training recurrent networks.
The keys are generated from a meta info txt file.
basicsr/data/meta_info/meta_info_REDS_GT.txt
Each line contains:
1. subfolder (clip) name; 2. frame number; 3. image shape, separated by
a white space.
Examples:
000 100 (720,1280,3)
001 100 (720,1280,3)
...
Key examples: "000/00000000"
GT (gt): Ground-Truth;
LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames.
Args:
opt (dict): Config for train dataset. It contains the following keys:
dataroot_gt (str): Data root path for gt.
dataroot_lq (str): Data root path for lq.
dataroot_flow (str, optional): Data root path for flow.
meta_info_file (str): Path for meta information file.
val_partition (str): Validation partition types. 'REDS4' or 'official'.
io_backend (dict): IO backend type and other kwarg.
num_frame (int): Window size for input frames.
gt_size (int): Cropped patched size for gt patches.
interval_list (list): Interval list for temporal augmentation.
random_reverse (bool): Random reverse input frames.
use_hflip (bool): Use horizontal flips.
use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
scale (bool): Scale, which will be added automatically.
"""
def __init__(self, opt):
super(REDSRecurrentDataset, self).__init__()
self.opt = opt
self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq'])
self.num_frame = opt['num_frame']
self.keys = []
with open(opt['meta_info_file'], 'r') as fin:
for line in fin:
folder, frame_num, _ = line.split(' ')
self.keys.extend([f'{folder}/{i:08d}' for i in range(int(frame_num))])
# remove the video clips used in validation
if opt['val_partition'] == 'REDS4':
val_partition = ['000', '011', '015', '020']
elif opt['val_partition'] == 'official':
val_partition = [f'{v:03d}' for v in range(240, 270)]
else:
raise ValueError(f'Wrong validation partition {opt["val_partition"]}.'
f"Supported ones are ['official', 'REDS4'].")
if opt['test_mode']:
self.keys = [v for v in self.keys if v.split('/')[0] in val_partition]
else:
self.keys = [v for v in self.keys if v.split('/')[0] not in val_partition]
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.is_lmdb = False
if self.io_backend_opt['type'] == 'lmdb':
self.is_lmdb = True
if hasattr(self, 'flow_root') and self.flow_root is not None:
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root, self.flow_root]
self.io_backend_opt['client_keys'] = ['lq', 'gt', 'flow']
else:
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root]
self.io_backend_opt['client_keys'] = ['lq', 'gt']
# temporal augmentation configs
self.interval_list = opt.get('interval_list', [1])
self.random_reverse = opt.get('random_reverse', False)
interval_str = ','.join(str(x) for x in self.interval_list)
logger = get_root_logger()
logger.info(f'Temporal augmentation interval list: [{interval_str}]; '
f'random reverse is {self.random_reverse}.')
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
scale = self.opt['scale']
gt_size = self.opt['gt_size']
key = self.keys[index]
clip_name, frame_name = key.split('/') # key example: 000/00000000
# determine the neighboring frames
interval = random.choice(self.interval_list)
# ensure not exceeding the borders
start_frame_idx = int(frame_name)
if start_frame_idx > 100 - self.num_frame * interval:
start_frame_idx = random.randint(0, 100 - self.num_frame * interval)
end_frame_idx = start_frame_idx + self.num_frame * interval
neighbor_list = list(range(start_frame_idx, end_frame_idx, interval))
# random reverse
if self.random_reverse and random.random() < 0.5:
neighbor_list.reverse()
# get the neighboring LQ and GT frames
img_lqs = []
img_gts = []
for neighbor in neighbor_list:
if self.is_lmdb:
img_lq_path = f'{clip_name}/{neighbor:08d}'
img_gt_path = f'{clip_name}/{neighbor:08d}'
else:
img_lq_path = self.lq_root / clip_name / f'{neighbor:08d}.png'
img_gt_path = self.gt_root / clip_name / f'{neighbor:08d}.png'
# get LQ
img_bytes = self.file_client.get(img_lq_path, 'lq')
img_lq = imfrombytes(img_bytes, float32=True)
img_lqs.append(img_lq)
# get GT
img_bytes = self.file_client.get(img_gt_path, 'gt')
img_gt = imfrombytes(img_bytes, float32=True)
img_gts.append(img_gt)
# randomly crop
img_gts, img_lqs = paired_random_crop(img_gts, img_lqs, gt_size, scale, img_gt_path)
# augmentation - flip, rotate
img_lqs.extend(img_gts)
img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'])
img_results = img2tensor(img_results)
img_gts = torch.stack(img_results[len(img_lqs) // 2:], dim=0)
img_lqs = torch.stack(img_results[:len(img_lqs) // 2], dim=0)
# img_lqs: (t, c, h, w)
# img_gts: (t, c, h, w)
# key: str
return {'lq': img_lqs, 'gt': img_gts, 'key': key}
def __len__(self):
return len(self.keys)
|