File size: 6,945 Bytes
4730cdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import random
import torch
from pathlib import Path
from torch.utils import data as data

from basicsr.data.transforms import augment, paired_random_crop
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
from basicsr.utils.registry import DATASET_REGISTRY


@DATASET_REGISTRY.register()
class Vimeo90KDataset(data.Dataset):
    """Vimeo90K dataset for training.

    The keys are generated from a meta info txt file.
    basicsr/data/meta_info/meta_info_Vimeo90K_train_GT.txt

    Each line contains the following items, separated by a white space.

    1. clip name;
    2. frame number;
    3. image shape

    Examples:

    ::

        00001/0001 7 (256,448,3)
        00001/0002 7 (256,448,3)

    - Key examples: "00001/0001"
    - GT (gt): Ground-Truth;
    - LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames.

    The neighboring frame list for different num_frame:

    ::

        num_frame | frame list
                1 | 4
                3 | 3,4,5
                5 | 2,3,4,5,6
                7 | 1,2,3,4,5,6,7

    Args:
        opt (dict): Config for train dataset. It contains the following keys:
        dataroot_gt (str): Data root path for gt.
        dataroot_lq (str): Data root path for lq.
        meta_info_file (str): Path for meta information file.
        io_backend (dict): IO backend type and other kwarg.
        num_frame (int): Window size for input frames.
        gt_size (int): Cropped patched size for gt patches.
        random_reverse (bool): Random reverse input frames.
        use_hflip (bool): Use horizontal flips.
        use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
        scale (bool): Scale, which will be added automatically.
    """

    def __init__(self, opt):
        super(Vimeo90KDataset, self).__init__()
        self.opt = opt
        self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq'])

        with open(opt['meta_info_file'], 'r') as fin:
            self.keys = [line.split(' ')[0] for line in fin]

        # file client (io backend)
        self.file_client = None
        self.io_backend_opt = opt['io_backend']
        self.is_lmdb = False
        if self.io_backend_opt['type'] == 'lmdb':
            self.is_lmdb = True
            self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root]
            self.io_backend_opt['client_keys'] = ['lq', 'gt']

        # indices of input images
        self.neighbor_list = [i + (9 - opt['num_frame']) // 2 for i in range(opt['num_frame'])]

        # temporal augmentation configs
        self.random_reverse = opt['random_reverse']
        logger = get_root_logger()
        logger.info(f'Random reverse is {self.random_reverse}.')

    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)

        # random reverse
        if self.random_reverse and random.random() < 0.5:
            self.neighbor_list.reverse()

        scale = self.opt['scale']
        gt_size = self.opt['gt_size']
        key = self.keys[index]
        clip, seq = key.split('/')  # key example: 00001/0001

        # get the GT frame (im4.png)
        if self.is_lmdb:
            img_gt_path = f'{key}/im4'
        else:
            img_gt_path = self.gt_root / clip / seq / 'im4.png'
        img_bytes = self.file_client.get(img_gt_path, 'gt')
        img_gt = imfrombytes(img_bytes, float32=True)

        # get the neighboring LQ frames
        img_lqs = []
        for neighbor in self.neighbor_list:
            if self.is_lmdb:
                img_lq_path = f'{clip}/{seq}/im{neighbor}'
            else:
                img_lq_path = self.lq_root / clip / seq / f'im{neighbor}.png'
            img_bytes = self.file_client.get(img_lq_path, 'lq')
            img_lq = imfrombytes(img_bytes, float32=True)
            img_lqs.append(img_lq)

        # randomly crop
        img_gt, img_lqs = paired_random_crop(img_gt, img_lqs, gt_size, scale, img_gt_path)

        # augmentation - flip, rotate
        img_lqs.append(img_gt)
        img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'])

        img_results = img2tensor(img_results)
        img_lqs = torch.stack(img_results[0:-1], dim=0)
        img_gt = img_results[-1]

        # img_lqs: (t, c, h, w)
        # img_gt: (c, h, w)
        # key: str
        return {'lq': img_lqs, 'gt': img_gt, 'key': key}

    def __len__(self):
        return len(self.keys)


@DATASET_REGISTRY.register()
class Vimeo90KRecurrentDataset(Vimeo90KDataset):

    def __init__(self, opt):
        super(Vimeo90KRecurrentDataset, self).__init__(opt)

        self.flip_sequence = opt['flip_sequence']
        self.neighbor_list = [1, 2, 3, 4, 5, 6, 7]

    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)

        # random reverse
        if self.random_reverse and random.random() < 0.5:
            self.neighbor_list.reverse()

        scale = self.opt['scale']
        gt_size = self.opt['gt_size']
        key = self.keys[index]
        clip, seq = key.split('/')  # key example: 00001/0001

        # get the neighboring LQ and  GT frames
        img_lqs = []
        img_gts = []
        for neighbor in self.neighbor_list:
            if self.is_lmdb:
                img_lq_path = f'{clip}/{seq}/im{neighbor}'
                img_gt_path = f'{clip}/{seq}/im{neighbor}'
            else:
                img_lq_path = self.lq_root / clip / seq / f'im{neighbor}.png'
                img_gt_path = self.gt_root / clip / seq / f'im{neighbor}.png'
            # LQ
            img_bytes = self.file_client.get(img_lq_path, 'lq')
            img_lq = imfrombytes(img_bytes, float32=True)
            # GT
            img_bytes = self.file_client.get(img_gt_path, 'gt')
            img_gt = imfrombytes(img_bytes, float32=True)

            img_lqs.append(img_lq)
            img_gts.append(img_gt)

        # randomly crop
        img_gts, img_lqs = paired_random_crop(img_gts, img_lqs, gt_size, scale, img_gt_path)

        # augmentation - flip, rotate
        img_lqs.extend(img_gts)
        img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'])

        img_results = img2tensor(img_results)
        img_lqs = torch.stack(img_results[:7], dim=0)
        img_gts = torch.stack(img_results[7:], dim=0)

        if self.flip_sequence:  # flip the sequence: 7 frames to 14 frames
            img_lqs = torch.cat([img_lqs, img_lqs.flip(0)], dim=0)
            img_gts = torch.cat([img_gts, img_gts.flip(0)], dim=0)

        # img_lqs: (t, c, h, w)
        # img_gt: (c, h, w)
        # key: str
        return {'lq': img_lqs, 'gt': img_gts, 'key': key}

    def __len__(self):
        return len(self.keys)