File size: 16,516 Bytes
4730cdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
'''
This code script is borrowed from https://github.com/advimman/lama (discarding the segmentation mask generator).
'''
import math
import random
import hashlib
from enum import Enum
import cv2
import numpy as np
# from saicinpainting.evaluation.masks.mask import SegmentationMask
# from saicinpainting.utils import LinearRamp
class LinearRamp:
def __init__(self, start_value=0, end_value=1, start_iter=-1, end_iter=0):
self.start_value = start_value
self.end_value = end_value
self.start_iter = start_iter
self.end_iter = end_iter
def __call__(self, i):
if i < self.start_iter:
return self.start_value
if i >= self.end_iter:
return self.end_value
part = (i - self.start_iter) / (self.end_iter - self.start_iter)
return self.start_value * (1 - part) + self.end_value * part
class DrawMethod(Enum):
LINE = 'line'
CIRCLE = 'circle'
SQUARE = 'square'
def make_random_irregular_mask(shape, max_angle=4, max_len=60, max_width=20, min_times=0, max_times=10,
draw_method=DrawMethod.LINE):
draw_method = DrawMethod(draw_method)
height, width = shape
mask = np.zeros((height, width), np.float32)
times = np.random.randint(min_times, max_times + 1)
for i in range(times):
start_x = np.random.randint(width)
start_y = np.random.randint(height)
for j in range(1 + np.random.randint(5)):
angle = 0.01 + np.random.randint(max_angle)
if i % 2 == 0:
angle = 2 * 3.1415926 - angle
length = 10 + np.random.randint(max_len)
brush_w = 5 + np.random.randint(max_width)
end_x = np.clip((start_x + length * np.sin(angle)).astype(np.int32), 0, width)
end_y = np.clip((start_y + length * np.cos(angle)).astype(np.int32), 0, height)
if draw_method == DrawMethod.LINE:
cv2.line(mask, (start_x, start_y), (end_x, end_y), 1.0, brush_w)
elif draw_method == DrawMethod.CIRCLE:
cv2.circle(mask, (start_x, start_y), radius=brush_w, color=1., thickness=-1)
elif draw_method == DrawMethod.SQUARE:
radius = brush_w // 2
mask[start_y - radius:start_y + radius, start_x - radius:start_x + radius] = 1
start_x, start_y = end_x, end_y
return mask[None, ...]
class RandomIrregularMaskGenerator:
def __init__(self, max_angle=4, max_len=60, max_width=20, min_times=0, max_times=10, ramp_kwargs=None,
draw_method=DrawMethod.LINE):
self.max_angle = max_angle
self.max_len = max_len
self.max_width = max_width
self.min_times = min_times
self.max_times = max_times
self.draw_method = draw_method
self.ramp = LinearRamp(**ramp_kwargs) if ramp_kwargs is not None else None
def __call__(self, img, iter_i=None, raw_image=None):
coef = self.ramp(iter_i) if (self.ramp is not None) and (iter_i is not None) else 1
cur_max_len = int(max(1, self.max_len * coef))
cur_max_width = int(max(1, self.max_width * coef))
cur_max_times = int(self.min_times + 1 + (self.max_times - self.min_times) * coef)
return make_random_irregular_mask(img.shape[1:], max_angle=self.max_angle, max_len=cur_max_len,
max_width=cur_max_width, min_times=self.min_times, max_times=cur_max_times,
draw_method=self.draw_method)
def make_random_rectangle_mask(shape, margin=10, bbox_min_size=30, bbox_max_size=100, min_times=0, max_times=3):
height, width = shape
mask = np.zeros((height, width), np.float32)
bbox_max_size = min(bbox_max_size, height - margin * 2, width - margin * 2)
times = np.random.randint(min_times, max_times + 1)
for i in range(times):
box_width = np.random.randint(bbox_min_size, bbox_max_size)
box_height = np.random.randint(bbox_min_size, bbox_max_size)
start_x = np.random.randint(margin, width - margin - box_width + 1)
start_y = np.random.randint(margin, height - margin - box_height + 1)
mask[start_y:start_y + box_height, start_x:start_x + box_width] = 1
return mask[None, ...]
class RandomRectangleMaskGenerator:
def __init__(self, margin=10, bbox_min_size=30, bbox_max_size=100, min_times=0, max_times=3, ramp_kwargs=None):
self.margin = margin
self.bbox_min_size = bbox_min_size
self.bbox_max_size = bbox_max_size
self.min_times = min_times
self.max_times = max_times
self.ramp = LinearRamp(**ramp_kwargs) if ramp_kwargs is not None else None
def __call__(self, img, iter_i=None, raw_image=None):
coef = self.ramp(iter_i) if (self.ramp is not None) and (iter_i is not None) else 1
cur_bbox_max_size = int(self.bbox_min_size + 1 + (self.bbox_max_size - self.bbox_min_size) * coef)
cur_max_times = int(self.min_times + (self.max_times - self.min_times) * coef)
return make_random_rectangle_mask(img.shape[1:], margin=self.margin, bbox_min_size=self.bbox_min_size,
bbox_max_size=cur_bbox_max_size, min_times=self.min_times,
max_times=cur_max_times)
def make_random_superres_mask(shape, min_step=2, max_step=4, min_width=1, max_width=3):
height, width = shape
mask = np.zeros((height, width), np.float32)
step_x = np.random.randint(min_step, max_step + 1)
width_x = np.random.randint(min_width, min(step_x, max_width + 1))
offset_x = np.random.randint(0, step_x)
step_y = np.random.randint(min_step, max_step + 1)
width_y = np.random.randint(min_width, min(step_y, max_width + 1))
offset_y = np.random.randint(0, step_y)
for dy in range(width_y):
mask[offset_y + dy::step_y] = 1
for dx in range(width_x):
mask[:, offset_x + dx::step_x] = 1
return mask[None, ...]
class RandomSuperresMaskGenerator:
def __init__(self, **kwargs):
self.kwargs = kwargs
def __call__(self, img, iter_i=None):
return make_random_superres_mask(img.shape[1:], **self.kwargs)
class DumbAreaMaskGenerator:
min_ratio = 0.1
max_ratio = 0.35
default_ratio = 0.225
def __init__(self, is_training):
#Parameters:
# is_training(bool): If true - random rectangular mask, if false - central square mask
self.is_training = is_training
def _random_vector(self, dimension):
if self.is_training:
lower_limit = math.sqrt(self.min_ratio)
upper_limit = math.sqrt(self.max_ratio)
mask_side = round((random.random() * (upper_limit - lower_limit) + lower_limit) * dimension)
u = random.randint(0, dimension-mask_side-1)
v = u+mask_side
else:
margin = (math.sqrt(self.default_ratio) / 2) * dimension
u = round(dimension/2 - margin)
v = round(dimension/2 + margin)
return u, v
def __call__(self, img, iter_i=None, raw_image=None):
c, height, width = img.shape
mask = np.zeros((height, width), np.float32)
x1, x2 = self._random_vector(width)
y1, y2 = self._random_vector(height)
mask[x1:x2, y1:y2] = 1
return mask[None, ...]
class OutpaintingMaskGenerator:
def __init__(self, min_padding_percent:float=0.04, max_padding_percent:int=0.25, left_padding_prob:float=0.5, top_padding_prob:float=0.5,
right_padding_prob:float=0.5, bottom_padding_prob:float=0.5, is_fixed_randomness:bool=False):
"""
is_fixed_randomness - get identical paddings for the same image if args are the same
"""
self.min_padding_percent = min_padding_percent
self.max_padding_percent = max_padding_percent
self.probs = [left_padding_prob, top_padding_prob, right_padding_prob, bottom_padding_prob]
self.is_fixed_randomness = is_fixed_randomness
assert self.min_padding_percent <= self.max_padding_percent
assert self.max_padding_percent > 0
assert len([x for x in [self.min_padding_percent, self.max_padding_percent] if (x>=0 and x<=1)]) == 2, f"Padding percentage should be in [0,1]"
assert sum(self.probs) > 0, f"At least one of the padding probs should be greater than 0 - {self.probs}"
assert len([x for x in self.probs if (x >= 0) and (x <= 1)]) == 4, f"At least one of padding probs is not in [0,1] - {self.probs}"
if len([x for x in self.probs if x > 0]) == 1:
LOGGER.warning(f"Only one padding prob is greater than zero - {self.probs}. That means that the outpainting masks will be always on the same side")
def apply_padding(self, mask, coord):
mask[int(coord[0][0]*self.img_h):int(coord[1][0]*self.img_h),
int(coord[0][1]*self.img_w):int(coord[1][1]*self.img_w)] = 1
return mask
def get_padding(self, size):
n1 = int(self.min_padding_percent*size)
n2 = int(self.max_padding_percent*size)
return self.rnd.randint(n1, n2) / size
@staticmethod
def _img2rs(img):
arr = np.ascontiguousarray(img.astype(np.uint8))
str_hash = hashlib.sha1(arr).hexdigest()
res = hash(str_hash)%(2**32)
return res
def __call__(self, img, iter_i=None, raw_image=None):
c, self.img_h, self.img_w = img.shape
mask = np.zeros((self.img_h, self.img_w), np.float32)
at_least_one_mask_applied = False
if self.is_fixed_randomness:
assert raw_image is not None, f"Cant calculate hash on raw_image=None"
rs = self._img2rs(raw_image)
self.rnd = np.random.RandomState(rs)
else:
self.rnd = np.random
coords = [[
(0,0),
(1,self.get_padding(size=self.img_h))
],
[
(0,0),
(self.get_padding(size=self.img_w),1)
],
[
(0,1-self.get_padding(size=self.img_h)),
(1,1)
],
[
(1-self.get_padding(size=self.img_w),0),
(1,1)
]]
for pp, coord in zip(self.probs, coords):
if self.rnd.random() < pp:
at_least_one_mask_applied = True
mask = self.apply_padding(mask=mask, coord=coord)
if not at_least_one_mask_applied:
idx = self.rnd.choice(range(len(coords)), p=np.array(self.probs)/sum(self.probs))
mask = self.apply_padding(mask=mask, coord=coords[idx])
return mask[None, ...]
class ExpandMaskGenerator:
def __init__(self, masking_percent:float=0.25, center:bool=True):
"""
center: keeping the non-masking area in center
"""
self.center = center
self.masking_percent = masking_percent
assert self.masking_percent <= 0.95
assert self.masking_percent >= 0.05
def __call__(self, img, iter_i=None, raw_image=None):
"""
img: c x h x w, torch tensor
"""
h, w = img.shape[1:]
if self.center:
ind_start_h = int(h * self.masking_percent / 2)
ind_start_w = int(w * self.masking_percent / 2)
else:
ind_start_h = int(h * random.uniform(0.01, 1-self.masking_percent))
ind_start_w = int(w * random.uniform(0.01, 1-self.masking_percent))
ind_end_h = int(ind_start_h + h * (1 - self.masking_percent))
ind_end_w = int(ind_start_w + w * (1 - self.masking_percent))
mask = np.ones((1, h, w), dtype=np.float32)
mask[:, ind_start_h:ind_end_h, ind_start_w:ind_end_w] = 0
return mask
class HalfMaskGenerator:
def __init__(self, masking_percent:float=0.25):
self.masking_percent = masking_percent
assert self.masking_percent <= 0.95
assert self.masking_percent >= 0.05
def __call__(self, img, iter_i=None, raw_image=None):
"""
img: c x h x w, torch tensor
"""
h, w = img.shape[1:]
mask = np.zeros((1, h, w), dtype=np.float32)
flag = random.random()
if flag < 0.25:
mask[:, int(h*self.masking_percent):, ] = 1
elif flag < 0.5:
mask[:, :-int(h*self.masking_percent), ] = 1
elif flag < 0.75:
mask[:, :, int(w*self.masking_percent):, ] = 1
else:
mask[:, :, :-int(w*self.masking_percent), ] = 1
return mask
class AlterLineMaskGenerator:
def __init__(self):
pass
def __call__(self, img, iter_i=None, raw_image=None):
"""
img: c x h x w, torch tensor
"""
h, w = img.shape[1:]
mask = np.zeros((1, h , w), dtype=np.float32)
vertical = (random.random() > 0.5)
if vertical:
mask[:, ::2, ] = 1
else:
mask[:, :, ::2] = 1
return mask
class MixedMaskGenerator:
def __init__(self, irregular_proba=1/3, irregular_kwargs=None,
box_proba=1/3, box_kwargs=None,
squares_proba=0, squares_kwargs=None,
superres_proba=0, superres_kwargs=None,
outpainting_proba=0, outpainting_kwargs=None,
expand_proba=0, expand_kwargs=None,
half_proba=0, half_kwargs=None,
alterline_proba=0,
invert_proba=0):
self.probas = []
self.gens = []
if irregular_proba > 0:
self.probas.append(irregular_proba)
if irregular_kwargs is None:
irregular_kwargs = {}
else:
irregular_kwargs = dict(irregular_kwargs)
irregular_kwargs['draw_method'] = DrawMethod.LINE
self.gens.append(RandomIrregularMaskGenerator(**irregular_kwargs))
if box_proba > 0:
self.probas.append(box_proba)
if box_kwargs is None:
box_kwargs = {}
self.gens.append(RandomRectangleMaskGenerator(**box_kwargs))
if squares_proba > 0:
self.probas.append(squares_proba)
if squares_kwargs is None:
squares_kwargs = {}
else:
squares_kwargs = dict(squares_kwargs)
squares_kwargs['draw_method'] = DrawMethod.SQUARE
self.gens.append(RandomIrregularMaskGenerator(**squares_kwargs))
if superres_proba > 0:
self.probas.append(superres_proba)
if superres_kwargs is None:
superres_kwargs = {}
self.gens.append(RandomSuperresMaskGenerator(**superres_kwargs))
if outpainting_proba > 0:
self.probas.append(outpainting_proba)
if outpainting_kwargs is None:
outpainting_kwargs = {}
self.gens.append(OutpaintingMaskGenerator(**outpainting_kwargs))
if expand_proba > 0:
self.probas.append(expand_proba)
if expand_kwargs is None:
expand_kwargs = {}
self.gens.append(ExpandMaskGenerator(**expand_kwargs))
if half_proba > 0:
self.probas.append(half_proba)
if half_kwargs is None:
half_kwargs = {}
self.gens.append(HalfMaskGenerator(**half_kwargs))
if alterline_proba > 0:
self.probas.append(alterline_proba)
self.gens.append(AlterLineMaskGenerator())
self.probas = np.array(self.probas, dtype='float32')
self.probas /= self.probas.sum()
self.invert_proba = invert_proba
def __call__(self, img, iter_i=None, raw_image=None):
kind = np.random.choice(len(self.probas), p=self.probas)
gen = self.gens[kind]
result = gen(img, iter_i=iter_i, raw_image=raw_image)
if self.invert_proba > 0 and random.random() < self.invert_proba:
result = 1 - result
return result
def get_mask_generator(kind, kwargs):
if kind is None:
kind = "mixed"
if kwargs is None:
kwargs = {}
if kind == "mixed":
cl = MixedMaskGenerator
elif kind == "outpainting":
cl = OutpaintingMaskGenerator
elif kind == "dumb":
cl = DumbAreaMaskGenerator
else:
raise NotImplementedError(f"No such generator kind = {kind}")
return cl(**kwargs)
|