File size: 48,307 Bytes
4730cdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 |
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2022-05-18 13:04:06
import os, sys, math, time, random, datetime, functools
import lpips
import numpy as np
from pathlib import Path
from loguru import logger
from copy import deepcopy
from omegaconf import OmegaConf
from collections import OrderedDict
from einops import rearrange
from contextlib import nullcontext
from datapipe.datasets import create_dataset
from utils import util_net
from utils import util_common
from utils import util_image
from basicsr.utils import DiffJPEG, USMSharp
from basicsr.utils.img_process_util import filter2D
from basicsr.data.transforms import paired_random_crop
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
import torch
import torch.nn as nn
import torch.cuda.amp as amp
import torch.nn.functional as F
import torch.utils.data as udata
import torch.distributed as dist
import torch.multiprocessing as mp
import torchvision.utils as vutils
# from torch.utils.tensorboard import SummaryWriter
from torch.nn.parallel import DistributedDataParallel as DDP
class TrainerBase:
def __init__(self, configs):
self.configs = configs
# setup distributed training: self.num_gpus, self.rank
self.setup_dist()
# setup seed
self.setup_seed()
def setup_dist(self):
num_gpus = torch.cuda.device_count()
if num_gpus > 1:
if mp.get_start_method(allow_none=True) is None:
mp.set_start_method('spawn')
rank = int(os.environ['LOCAL_RANK'])
torch.cuda.set_device(rank % num_gpus)
dist.init_process_group(
timeout=datetime.timedelta(seconds=3600),
backend='nccl',
init_method='env://',
)
self.num_gpus = num_gpus
self.rank = int(os.environ['LOCAL_RANK']) if num_gpus > 1 else 0
def setup_seed(self, seed=None, global_seeding=None):
if seed is None:
seed = self.configs.train.get('seed', 12345)
if global_seeding is None:
global_seeding = self.configs.train.global_seeding
assert isinstance(global_seeding, bool)
if not global_seeding:
seed += self.rank
torch.cuda.manual_seed(seed)
else:
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def init_logger(self):
if self.configs.resume:
assert self.configs.resume.endswith(".pth")
save_dir = Path(self.configs.resume).parents[1]
project_id = save_dir.name
else:
project_id = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M")
save_dir = Path(self.configs.save_dir) / project_id
if not save_dir.exists() and self.rank == 0:
save_dir.mkdir(parents=True)
# setting log counter
if self.rank == 0:
self.log_step = {phase: 1 for phase in ['train', 'val']}
self.log_step_img = {phase: 1 for phase in ['train', 'val']}
# text logging
logtxet_path = save_dir / 'training.log'
if self.rank == 0:
if logtxet_path.exists():
assert self.configs.resume
self.logger = logger
self.logger.remove()
self.logger.add(logtxet_path, format="{message}", mode='a', level='INFO')
self.logger.add(sys.stdout, format="{message}")
# tensorboard logging
log_dir = save_dir / 'tf_logs'
self.tf_logging = self.configs.train.tf_logging
if self.rank == 0 and self.tf_logging:
if not log_dir.exists():
log_dir.mkdir()
self.writer = SummaryWriter(str(log_dir))
# checkpoint saving
ckpt_dir = save_dir / 'ckpts'
self.ckpt_dir = ckpt_dir
if self.rank == 0 and (not ckpt_dir.exists()):
ckpt_dir.mkdir()
if 'ema_rate' in self.configs.train:
self.ema_rate = self.configs.train.ema_rate
assert isinstance(self.ema_rate, float), "Ema rate must be a float number"
ema_ckpt_dir = save_dir / 'ema_ckpts'
self.ema_ckpt_dir = ema_ckpt_dir
if self.rank == 0 and (not ema_ckpt_dir.exists()):
ema_ckpt_dir.mkdir()
# save images into local disk
self.local_logging = self.configs.train.local_logging
if self.rank == 0 and self.local_logging:
image_dir = save_dir / 'images'
if not image_dir.exists():
(image_dir / 'train').mkdir(parents=True)
(image_dir / 'val').mkdir(parents=True)
self.image_dir = image_dir
# logging the configurations
if self.rank == 0:
self.logger.info(OmegaConf.to_yaml(self.configs))
def close_logger(self):
if self.rank == 0 and self.tf_logging:
self.writer.close()
def resume_from_ckpt(self):
def _load_ema_state(ema_state, ckpt):
for key in ema_state.keys():
if key not in ckpt and key.startswith('module'):
ema_state[key] = deepcopy(ckpt[7:].detach().data)
elif key not in ckpt and (not key.startswith('module')):
ema_state[key] = deepcopy(ckpt['module.'+key].detach().data)
else:
ema_state[key] = deepcopy(ckpt[key].detach().data)
if self.configs.resume:
assert self.configs.resume.endswith(".pth") and os.path.isfile(self.configs.resume)
if self.rank == 0:
self.logger.info(f"=> Loaded checkpoint from {self.configs.resume}")
ckpt = torch.load(self.configs.resume, map_location=f"cuda:{self.rank}")
util_net.reload_model(self.model, ckpt['state_dict'])
torch.cuda.empty_cache()
# learning rate scheduler
self.iters_start = ckpt['iters_start']
for ii in range(1, self.iters_start+1):
self.adjust_lr(ii)
# logging
if self.rank == 0:
self.log_step = ckpt['log_step']
self.log_step_img = ckpt['log_step_img']
# EMA model
if self.rank == 0 and hasattr(self, 'ema_rate'):
ema_ckpt_path = self.ema_ckpt_dir / ("ema_"+Path(self.configs.resume).name)
self.logger.info(f"=> Loaded EMA checkpoint from {str(ema_ckpt_path)}")
ema_ckpt = torch.load(ema_ckpt_path, map_location=f"cuda:{self.rank}")
_load_ema_state(self.ema_state, ema_ckpt)
torch.cuda.empty_cache()
# AMP scaler
if self.amp_scaler is not None:
if "amp_scaler" in ckpt:
self.amp_scaler.load_state_dict(ckpt["amp_scaler"])
if self.rank == 0:
self.logger.info("Loading scaler from resumed state...")
# reset the seed
self.setup_seed(seed=self.iters_start)
else:
self.iters_start = 0
def setup_optimizaton(self):
self.optimizer = torch.optim.AdamW(self.model.parameters(),
lr=self.configs.train.lr,
weight_decay=self.configs.train.weight_decay)
# amp settings
self.amp_scaler = amp.GradScaler() if self.configs.train.use_amp else None
def build_model(self):
params = self.configs.model.get('params', dict)
model = util_common.get_obj_from_str(self.configs.model.target)(**params)
model.cuda()
if self.configs.model.ckpt_path is not None:
ckpt_path = self.configs.model.ckpt_path
if self.rank == 0:
self.logger.info(f"Initializing model from {ckpt_path}")
ckpt = torch.load(ckpt_path, map_location=f"cuda:{self.rank}")
if 'state_dict' in ckpt:
ckpt = ckpt['state_dict']
util_net.reload_model(model, ckpt)
if self.configs.train.compile.flag:
if self.rank == 0:
self.logger.info("Begin compiling model...")
model = torch.compile(model, mode=self.configs.train.compile.mode)
if self.rank == 0:
self.logger.info("Compiling Done")
if self.num_gpus > 1:
self.model = DDP(model, device_ids=[self.rank,], static_graph=False) # wrap the network
else:
self.model = model
# EMA
if self.rank == 0 and hasattr(self.configs.train, 'ema_rate'):
self.ema_model = deepcopy(model).cuda()
self.ema_state = OrderedDict(
{key:deepcopy(value.data) for key, value in self.model.state_dict().items()}
)
self.ema_ignore_keys = [x for x in self.ema_state.keys() if ('running_' in x or 'num_batches_tracked' in x)]
# model information
self.print_model_info()
def build_dataloader(self):
def _wrap_loader(loader):
while True: yield from loader
# make datasets
datasets = {'train': create_dataset(self.configs.data.get('train', dict)), }
if hasattr(self.configs.data, 'val') and self.rank == 0:
datasets['val'] = create_dataset(self.configs.data.get('val', dict))
if self.rank == 0:
for phase in datasets.keys():
length = len(datasets[phase])
self.logger.info('Number of images in {:s} data set: {:d}'.format(phase, length))
# make dataloaders
if self.num_gpus > 1:
sampler = udata.distributed.DistributedSampler(
datasets['train'],
num_replicas=self.num_gpus,
rank=self.rank,
)
else:
sampler = None
dataloaders = {'train': _wrap_loader(udata.DataLoader(
datasets['train'],
batch_size=self.configs.train.batch[0] // self.num_gpus,
shuffle=False if self.num_gpus > 1 else True,
drop_last=True,
num_workers=min(self.configs.train.num_workers, 4),
pin_memory=True,
prefetch_factor=self.configs.train.get('prefetch_factor', 2),
worker_init_fn=my_worker_init_fn,
sampler=sampler,
))}
if hasattr(self.configs.data, 'val') and self.rank == 0:
dataloaders['val'] = udata.DataLoader(datasets['val'],
batch_size=self.configs.train.batch[1],
shuffle=False,
drop_last=False,
num_workers=0,
pin_memory=True,
)
self.datasets = datasets
self.dataloaders = dataloaders
self.sampler = sampler
def print_model_info(self):
if self.rank == 0:
num_params = util_net.calculate_parameters(self.model) / 1000**2
# self.logger.info("Detailed network architecture:")
# self.logger.info(self.model.__repr__())
self.logger.info(f"Number of parameters: {num_params:.2f}M")
def prepare_data(self, data, dtype=torch.float32, phase='train'):
data = {key:value.cuda().to(dtype=dtype) for key, value in data.items()}
return data
def validation(self):
pass
def train(self):
self.init_logger() # setup logger: self.logger
self.build_model() # build model: self.model, self.loss
self.setup_optimizaton() # setup optimization: self.optimzer, self.sheduler
self.resume_from_ckpt() # resume if necessary
self.build_dataloader() # prepare data: self.dataloaders, self.datasets, self.sampler
self.model.train()
num_iters_epoch = math.ceil(len(self.datasets['train']) / self.configs.train.batch[0])
for ii in range(self.iters_start, self.configs.train.iterations):
self.current_iters = ii + 1
# prepare data
data = self.prepare_data(next(self.dataloaders['train']))
# training phase
self.training_step(data)
# validation phase
if 'val' in self.dataloaders and (ii+1) % self.configs.train.get('val_freq', 10000) == 0:
self.validation()
#update learning rate
self.adjust_lr()
# save checkpoint
if (ii+1) % self.configs.train.save_freq == 0:
self.save_ckpt()
if (ii+1) % num_iters_epoch == 0 and self.sampler is not None:
self.sampler.set_epoch(ii+1)
# close the tensorboard
self.close_logger()
def training_step(self, data):
pass
def adjust_lr(self, current_iters=None):
assert hasattr(self, 'lr_scheduler')
self.lr_scheduler.step()
def save_ckpt(self):
if self.rank == 0:
ckpt_path = self.ckpt_dir / 'model_{:d}.pth'.format(self.current_iters)
ckpt = {
'iters_start': self.current_iters,
'log_step': {phase:self.log_step[phase] for phase in ['train', 'val']},
'log_step_img': {phase:self.log_step_img[phase] for phase in ['train', 'val']},
'state_dict': self.model.state_dict(),
}
if self.amp_scaler is not None:
ckpt['amp_scaler'] = self.amp_scaler.state_dict()
torch.save(ckpt, ckpt_path)
if hasattr(self, 'ema_rate'):
ema_ckpt_path = self.ema_ckpt_dir / 'ema_model_{:d}.pth'.format(self.current_iters)
torch.save(self.ema_state, ema_ckpt_path)
def reload_ema_model(self):
if self.rank == 0:
if self.num_gpus > 1:
model_state = {key[7:]:value for key, value in self.ema_state.items()}
else:
model_state = self.ema_state
self.ema_model.load_state_dict(model_state)
@torch.no_grad()
def update_ema_model(self):
if self.num_gpus > 1:
dist.barrier()
if self.rank == 0:
source_state = self.model.state_dict()
rate = self.ema_rate
for key, value in self.ema_state.items():
if key in self.ema_ignore_keys:
self.ema_state[key] = source_state[key]
else:
self.ema_state[key].mul_(rate).add_(source_state[key].detach().data, alpha=1-rate)
def logging_image(self, im_tensor, tag, phase, add_global_step=False, nrow=8):
"""
Args:
im_tensor: b x c x h x w tensor
im_tag: str
phase: 'train' or 'val'
nrow: number of displays in each row
"""
assert self.tf_logging or self.local_logging
im_tensor = vutils.make_grid(im_tensor, nrow=nrow, normalize=True, scale_each=True) # c x H x W
if self.local_logging:
im_path = str(self.image_dir / phase / f"{tag}-{self.log_step_img[phase]}.png")
im_np = im_tensor.cpu().permute(1,2,0).numpy()
util_image.imwrite(im_np, im_path)
if self.tf_logging:
self.writer.add_image(
f"{phase}-{tag}-{self.log_step_img[phase]}",
im_tensor,
self.log_step_img[phase],
)
if add_global_step:
self.log_step_img[phase] += 1
def logging_metric(self, metrics, tag, phase, add_global_step=False):
"""
Args:
metrics: dict
tag: str
phase: 'train' or 'val'
"""
if self.tf_logging:
tag = f"{phase}-{tag}"
if isinstance(metrics, dict):
self.writer.add_scalars(tag, metrics, self.log_step[phase])
else:
self.writer.add_scalar(tag, metrics, self.log_step[phase])
if add_global_step:
self.log_step[phase] += 1
else:
pass
def load_model(self, model, ckpt_path=None):
if self.rank == 0:
self.logger.info(f'Loading from {ckpt_path}...')
ckpt = torch.load(ckpt_path, map_location=f"cuda:{self.rank}")
if 'state_dict' in ckpt:
ckpt = ckpt['state_dict']
util_net.reload_model(model, ckpt)
if self.rank == 0:
self.logger.info('Loaded Done')
def freeze_model(self, net):
for params in net.parameters():
params.requires_grad = False
class TrainerDifIR(TrainerBase):
def setup_optimizaton(self):
super().setup_optimizaton()
if self.configs.train.lr_schedule == 'cosin':
self.lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer=self.optimizer,
T_max=self.configs.train.iterations - self.configs.train.warmup_iterations,
eta_min=self.configs.train.lr_min,
)
def build_model(self):
super().build_model()
if self.rank == 0 and hasattr(self.configs.train, 'ema_rate'):
self.ema_ignore_keys.extend([x for x in self.ema_state.keys() if 'relative_position_index' in x])
# autoencoder
if self.configs.autoencoder is not None:
ckpt = torch.load(self.configs.autoencoder.ckpt_path, map_location=f"cuda:{self.rank}")
if self.rank == 0:
self.logger.info(f"Restoring autoencoder from {self.configs.autoencoder.ckpt_path}")
params = self.configs.autoencoder.get('params', dict)
autoencoder = util_common.get_obj_from_str(self.configs.autoencoder.target)(**params)
autoencoder.cuda()
autoencoder.load_state_dict(ckpt, True)
for params in autoencoder.parameters():
params.requires_grad_(False)
autoencoder.eval()
if self.configs.train.compile.flag:
if self.rank == 0:
self.logger.info("Begin compiling autoencoder model...")
autoencoder = torch.compile(autoencoder, mode=self.configs.train.compile.mode)
if self.rank == 0:
self.logger.info("Compiling Done")
self.autoencoder = autoencoder
else:
self.autoencoder = None
# LPIPS metric
lpips_loss = lpips.LPIPS(net='vgg').to(f"cuda:{self.rank}")
for params in lpips_loss.parameters():
params.requires_grad_(False)
lpips_loss.eval()
if self.configs.train.compile.flag:
if self.rank == 0:
self.logger.info("Begin compiling LPIPS Metric...")
lpips_loss = torch.compile(lpips_loss, mode=self.configs.train.compile.mode)
if self.rank == 0:
self.logger.info("Compiling Done")
self.lpips_loss = lpips_loss
params = self.configs.diffusion.get('params', dict)
self.base_diffusion = util_common.get_obj_from_str(self.configs.diffusion.target)(**params)
@torch.no_grad()
def _dequeue_and_enqueue(self):
"""It is the training pair pool for increasing the diversity in a batch.
Batch processing limits the diversity of synthetic degradations in a batch. For example, samples in a
batch could not have different resize scaling factors. Therefore, we employ this training pair pool
to increase the degradation diversity in a batch.
"""
# initialize
b, c, h, w = self.lq.size()
if not hasattr(self, 'queue_size'):
self.queue_size = self.configs.degradation.get('queue_size', b*10)
if not hasattr(self, 'queue_lr'):
assert self.queue_size % b == 0, f'queue size {self.queue_size} should be divisible by batch size {b}'
self.queue_lr = torch.zeros(self.queue_size, c, h, w).cuda()
_, c, h, w = self.gt.size()
self.queue_gt = torch.zeros(self.queue_size, c, h, w).cuda()
self.queue_ptr = 0
if self.queue_ptr == self.queue_size: # the pool is full
# do dequeue and enqueue
# shuffle
idx = torch.randperm(self.queue_size)
self.queue_lr = self.queue_lr[idx]
self.queue_gt = self.queue_gt[idx]
# get first b samples
lq_dequeue = self.queue_lr[0:b, :, :, :].clone()
gt_dequeue = self.queue_gt[0:b, :, :, :].clone()
# update the queue
self.queue_lr[0:b, :, :, :] = self.lq.clone()
self.queue_gt[0:b, :, :, :] = self.gt.clone()
self.lq = lq_dequeue
self.gt = gt_dequeue
else:
# only do enqueue
self.queue_lr[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.lq.clone()
self.queue_gt[self.queue_ptr:self.queue_ptr + b, :, :, :] = self.gt.clone()
self.queue_ptr = self.queue_ptr + b
@torch.no_grad()
def prepare_data(self, data, dtype=torch.float32, realesrgan=None, phase='train'):
if realesrgan is None:
realesrgan = self.configs.data.get(phase, dict).type == 'realesrgan'
if realesrgan and phase == 'train':
if not hasattr(self, 'jpeger'):
self.jpeger = DiffJPEG(differentiable=False).cuda() # simulate JPEG compression artifacts
if not hasattr(self, 'use_sharpener'):
self.use_sharpener = USMSharp().cuda()
im_gt = data['gt'].cuda()
kernel1 = data['kernel1'].cuda()
kernel2 = data['kernel2'].cuda()
sinc_kernel = data['sinc_kernel'].cuda()
ori_h, ori_w = im_gt.size()[2:4]
if isinstance(self.configs.degradation.sf, int):
sf = self.configs.degradation.sf
else:
assert len(self.configs.degradation.sf) == 2
sf = random.uniform(*self.configs.degradation.sf)
if self.configs.degradation.use_sharp:
im_gt = self.use_sharpener(im_gt)
# ----------------------- The first degradation process ----------------------- #
# blur
out = filter2D(im_gt, kernel1)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
self.configs.degradation['resize_prob'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, self.configs.degradation['resize_range'][1])
elif updown_type == 'down':
scale = random.uniform(self.configs.degradation['resize_range'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(out, scale_factor=scale, mode=mode)
# add noise
gray_noise_prob = self.configs.degradation['gray_noise_prob']
if random.random() < self.configs.degradation['gaussian_noise_prob']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=self.configs.degradation['noise_range'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=self.configs.degradation['poisson_scale_range'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.configs.degradation['jpeg_range'])
out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts
out = self.jpeger(out, quality=jpeg_p)
# ----------------------- The second degradation process ----------------------- #
if random.random() < self.configs.degradation['second_order_prob']:
# blur
if random.random() < self.configs.degradation['second_blur_prob']:
out = filter2D(out, kernel2)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
self.configs.degradation['resize_prob2'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, self.configs.degradation['resize_range2'][1])
elif updown_type == 'down':
scale = random.uniform(self.configs.degradation['resize_range2'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(int(ori_h / sf * scale), int(ori_w / sf * scale)),
mode=mode,
)
# add noise
gray_noise_prob = self.configs.degradation['gray_noise_prob2']
if random.random() < self.configs.degradation['gaussian_noise_prob2']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=self.configs.degradation['noise_range2'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=self.configs.degradation['poisson_scale_range2'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False,
)
# JPEG compression + the final sinc filter
# We also need to resize images to desired sizes. We group [resize back + sinc filter] together
# as one operation.
# We consider two orders:
# 1. [resize back + sinc filter] + JPEG compression
# 2. JPEG compression + [resize back + sinc filter]
# Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
if random.random() < 0.5:
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(ori_h // sf, ori_w // sf),
mode=mode,
)
out = filter2D(out, sinc_kernel)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.configs.degradation['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
else:
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.configs.degradation['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(ori_h // sf, ori_w // sf),
mode=mode,
)
out = filter2D(out, sinc_kernel)
# resize back
if self.configs.degradation.resize_back:
out = F.interpolate(out, size=(ori_h, ori_w), mode='bicubic')
temp_sf = self.configs.degradation['sf']
else:
temp_sf = self.configs.degradation['sf']
# clamp and round
im_lq = torch.clamp((out * 255.0).round(), 0, 255) / 255.
# random crop
gt_size = self.configs.degradation['gt_size']
im_gt, im_lq = paired_random_crop(im_gt, im_lq, gt_size, temp_sf)
im_lq = (im_lq - 0.5) / 0.5 # [0, 1] to [-1, 1]
im_gt = (im_gt - 0.5) / 0.5 # [0, 1] to [-1, 1]
self.lq, self.gt, flag_nan = replace_nan_in_batch(im_lq, im_gt)
if flag_nan:
with open(f"records_nan_rank{self.rank}.log", 'a') as f:
f.write(f'Find Nan value in rank{self.rank}\n')
# training pair pool
self._dequeue_and_enqueue()
self.lq = self.lq.contiguous() # for the warning: grad and param do not obey the gradient layout contract
return {'lq':self.lq, 'gt':self.gt}
elif phase == 'val':
offset = self.configs.train.get('val_resolution', 256)
for key, value in data.items():
h, w = value.shape[2:]
if h > offset and w > offset:
h_end = int((h // offset) * offset)
w_end = int((w // offset) * offset)
data[key] = value[:, :, :h_end, :w_end]
else:
h_pad = math.ceil(h / offset) * offset - h
w_pad = math.ceil(w / offset) * offset - w
padding_mode = self.configs.train.get('val_padding_mode', 'reflect')
data[key] = F.pad(value, pad=(0, w_pad, 0, h_pad), mode=padding_mode)
return {key:value.cuda().to(dtype=dtype) for key, value in data.items()}
else:
return {key:value.cuda().to(dtype=dtype) for key, value in data.items()}
def backward_step(self, dif_loss_wrapper, micro_data, num_grad_accumulate, tt):
context = torch.cuda.amp.autocast if self.configs.train.use_amp else nullcontext
with context():
losses, z_t, z0_pred = dif_loss_wrapper()
losses['loss'] = losses['mse']
loss = losses['loss'].mean() / num_grad_accumulate
if self.amp_scaler is None:
loss.backward()
else:
self.amp_scaler.scale(loss).backward()
return losses, z0_pred, z_t
def training_step(self, data):
current_batchsize = data['gt'].shape[0]
micro_batchsize = self.configs.train.microbatch
num_grad_accumulate = math.ceil(current_batchsize / micro_batchsize)
for jj in range(0, current_batchsize, micro_batchsize):
micro_data = {key:value[jj:jj+micro_batchsize,] for key, value in data.items()}
last_batch = (jj+micro_batchsize >= current_batchsize)
tt = torch.randint(
0, self.base_diffusion.num_timesteps,
size=(micro_data['gt'].shape[0],),
device=f"cuda:{self.rank}",
)
latent_downsamping_sf = 2**(len(self.configs.autoencoder.params.ddconfig.ch_mult) - 1)
latent_resolution = micro_data['gt'].shape[-1] // latent_downsamping_sf
if 'autoencoder' in self.configs:
noise_chn = self.configs.autoencoder.params.embed_dim
else:
noise_chn = micro_data['gt'].shape[1]
noise = torch.randn(
size= (micro_data['gt'].shape[0], noise_chn,) + (latent_resolution, ) * 2,
device=micro_data['gt'].device,
)
if self.configs.model.params.cond_lq:
model_kwargs = {'lq':micro_data['lq'],}
if 'mask' in micro_data:
model_kwargs['mask'] = micro_data['mask']
else:
model_kwargs = None
compute_losses = functools.partial(
self.base_diffusion.training_losses,
self.model,
micro_data['gt'],
micro_data['lq'],
tt,
first_stage_model=self.autoencoder,
model_kwargs=model_kwargs,
noise=noise,
)
if last_batch or self.num_gpus <= 1:
losses, z0_pred, z_t = self.backward_step(compute_losses, micro_data, num_grad_accumulate, tt)
else:
with self.model.no_sync():
losses, z0_pred, z_t = self.backward_step(compute_losses, micro_data, num_grad_accumulate, tt)
# make logging
if last_batch:
self.log_step_train(losses, tt, micro_data, z_t, z0_pred.detach())
if self.configs.train.use_amp:
self.amp_scaler.step(self.optimizer)
self.amp_scaler.update()
else:
self.optimizer.step()
# grad zero
self.model.zero_grad()
if hasattr(self.configs.train, 'ema_rate'):
self.update_ema_model()
def adjust_lr(self, current_iters=None):
base_lr = self.configs.train.lr
warmup_steps = self.configs.train.warmup_iterations
current_iters = self.current_iters if current_iters is None else current_iters
if current_iters <= warmup_steps:
for params_group in self.optimizer.param_groups:
params_group['lr'] = (current_iters / warmup_steps) * base_lr
else:
if hasattr(self, 'lr_scheduler'):
self.lr_scheduler.step()
def log_step_train(self, loss, tt, batch, z_t, z0_pred, phase='train'):
'''
param loss: a dict recording the loss informations
param tt: 1-D tensor, time steps
'''
if self.rank == 0:
chn = batch['gt'].shape[1]
num_timesteps = self.base_diffusion.num_timesteps
record_steps = [1, (num_timesteps // 2) + 1, num_timesteps]
if self.current_iters % self.configs.train.log_freq[0] == 1:
self.loss_mean = {key:torch.zeros(size=(len(record_steps),), dtype=torch.float64)
for key in loss.keys()}
self.loss_count = torch.zeros(size=(len(record_steps),), dtype=torch.float64)
for jj in range(len(record_steps)):
for key, value in loss.items():
index = record_steps[jj] - 1
mask = torch.where(tt == index, torch.ones_like(tt), torch.zeros_like(tt))
current_loss = torch.sum(value.detach() * mask)
self.loss_mean[key][jj] += current_loss.item()
self.loss_count[jj] += mask.sum().item()
if self.current_iters % self.configs.train.log_freq[0] == 0:
if torch.any(self.loss_count == 0):
self.loss_count += 1e-4
for key in loss.keys():
self.loss_mean[key] /= self.loss_count
log_str = 'Train: {:06d}/{:06d}, Loss/MSE: '.format(
self.current_iters,
self.configs.train.iterations)
for jj, current_record in enumerate(record_steps):
log_str += 't({:d}):{:.1e}/{:.1e}, '.format(
current_record,
self.loss_mean['loss'][jj].item(),
self.loss_mean['mse'][jj].item(),
)
log_str += 'lr:{:.2e}'.format(self.optimizer.param_groups[0]['lr'])
self.logger.info(log_str)
self.logging_metric(self.loss_mean, tag='Loss', phase=phase, add_global_step=True)
if self.current_iters % self.configs.train.log_freq[1] == 0:
self.logging_image(batch['lq'], tag='lq', phase=phase, add_global_step=False)
self.logging_image(batch['gt'], tag='gt', phase=phase, add_global_step=False)
x_t = self.base_diffusion.decode_first_stage(
self.base_diffusion._scale_input(z_t, tt),
self.autoencoder,
)
self.logging_image(x_t, tag='diffused', phase=phase, add_global_step=False)
x0_pred = self.base_diffusion.decode_first_stage(
z0_pred,
self.autoencoder,
)
self.logging_image(x0_pred, tag='x0-pred', phase=phase, add_global_step=True)
if self.current_iters % self.configs.train.save_freq == 1:
self.tic = time.time()
if self.current_iters % self.configs.train.save_freq == 0:
self.toc = time.time()
elaplsed = (self.toc - self.tic)
self.logger.info(f"Elapsed time: {elaplsed:.2f}s")
self.logger.info("="*100)
def validation(self, phase='val'):
if self.rank == 0:
if self.configs.train.use_ema_val:
self.reload_ema_model()
self.ema_model.eval()
else:
self.model.eval()
indices = np.linspace(
0,
self.base_diffusion.num_timesteps,
self.base_diffusion.num_timesteps if self.base_diffusion.num_timesteps < 5 else 4,
endpoint=False,
dtype=np.int64,
).tolist()
if not (self.base_diffusion.num_timesteps-1) in indices:
indices.append(self.base_diffusion.num_timesteps-1)
batch_size = self.configs.train.batch[1]
num_iters_epoch = math.ceil(len(self.datasets[phase]) / batch_size)
mean_psnr = mean_lpips = 0
for ii, data in enumerate(self.dataloaders[phase]):
data = self.prepare_data(data, phase='val')
if 'gt' in data:
im_lq, im_gt = data['lq'], data['gt']
else:
im_lq = data['lq']
num_iters = 0
if self.configs.model.params.cond_lq:
model_kwargs = {'lq':data['lq'],}
if 'mask' in data:
model_kwargs['mask'] = data['mask']
else:
model_kwargs = None
tt = torch.tensor(
[self.base_diffusion.num_timesteps, ]*im_lq.shape[0],
dtype=torch.int64,
).cuda()
for sample in self.base_diffusion.p_sample_loop_progressive(
y=im_lq,
model=self.ema_model if self.configs.train.use_ema_val else self.model,
first_stage_model=self.autoencoder,
noise=None,
clip_denoised=True if self.autoencoder is None else False,
model_kwargs=model_kwargs,
device=f"cuda:{self.rank}",
progress=False,
):
sample_decode = {}
if num_iters in indices:
for key, value in sample.items():
if key in ['sample', ]:
sample_decode[key] = self.base_diffusion.decode_first_stage(
value,
self.autoencoder,
).clamp(-1.0, 1.0)
im_sr_progress = sample_decode['sample']
if num_iters + 1 == 1:
im_sr_all = im_sr_progress
else:
im_sr_all = torch.cat((im_sr_all, im_sr_progress), dim=1)
num_iters += 1
tt -= 1
if 'gt' in data:
mean_psnr += util_image.batch_PSNR(
sample_decode['sample'] * 0.5 + 0.5,
im_gt * 0.5 + 0.5,
ycbcr=self.configs.train.val_y_channel,
)
mean_lpips += self.lpips_loss(
sample_decode['sample'],
im_gt,
).sum().item()
if (ii + 1) % self.configs.train.log_freq[2] == 0:
self.logger.info(f'Validation: {ii+1:02d}/{num_iters_epoch:02d}...')
im_sr_all = rearrange(im_sr_all, 'b (k c) h w -> (b k) c h w', c=im_lq.shape[1])
self.logging_image(
im_sr_all,
tag='progress',
phase=phase,
add_global_step=False,
nrow=len(indices),
)
if 'gt' in data:
self.logging_image(im_gt, tag='gt', phase=phase, add_global_step=False)
self.logging_image(im_lq, tag='lq', phase=phase, add_global_step=True)
if 'gt' in data:
mean_psnr /= len(self.datasets[phase])
mean_lpips /= len(self.datasets[phase])
self.logger.info(f'Validation Metric: PSNR={mean_psnr:5.2f}, LPIPS={mean_lpips:6.4f}...')
self.logging_metric(mean_psnr, tag='PSNR', phase=phase, add_global_step=False)
self.logging_metric(mean_lpips, tag='LPIPS', phase=phase, add_global_step=True)
self.logger.info("="*100)
if not (self.configs.train.use_ema_val and hasattr(self.configs.train, 'ema_rate')):
self.model.train()
class TrainerDifIRLPIPS(TrainerDifIR):
def backward_step(self, dif_loss_wrapper, micro_data, num_grad_accumulate, tt):
loss_coef = self.configs.train.get('loss_coef')
context = torch.cuda.amp.autocast if self.configs.train.use_amp else nullcontext
# diffusion loss
with context():
losses, z_t, z0_pred = dif_loss_wrapper()
x0_pred = self.base_diffusion.decode_first_stage(
z0_pred,
self.autoencoder,
) # f16
self.current_x0_pred = x0_pred.detach()
# classification loss
losses["lpips"] = self.lpips_loss(
x0_pred.clamp(-1.0, 1.0),
micro_data['gt'],
).to(z0_pred.dtype).view(-1)
flag_nan = torch.any(torch.isnan(losses["lpips"]))
if flag_nan:
losses["lpips"] = torch.nan_to_num(losses["lpips"], nan=0.0)
losses["mse"] *= loss_coef[0]
losses["lpips"] *= loss_coef[1]
assert losses["mse"].shape == losses["lpips"].shape
if flag_nan:
losses["loss"] = losses["mse"]
else:
losses["loss"] = losses["mse"] + losses["lpips"]
loss = losses['loss'].mean() / num_grad_accumulate
if self.amp_scaler is None:
loss.backward()
else:
self.amp_scaler.scale(loss).backward()
return losses, z0_pred, z_t
def log_step_train(self, loss, tt, batch, z_t, z0_pred, phase='train'):
'''
param loss: a dict recording the loss informations
param tt: 1-D tensor, time steps
'''
if self.rank == 0:
chn = batch['gt'].shape[1]
num_timesteps = self.base_diffusion.num_timesteps
record_steps = [1, (num_timesteps // 2) + 1, num_timesteps]
if self.current_iters % self.configs.train.log_freq[0] == 1:
self.loss_mean = {key:torch.zeros(size=(len(record_steps),), dtype=torch.float64)
for key in loss.keys()}
self.loss_count = torch.zeros(size=(len(record_steps),), dtype=torch.float64)
for jj in range(len(record_steps)):
for key, value in loss.items():
index = record_steps[jj] - 1
mask = torch.where(tt == index, torch.ones_like(tt), torch.zeros_like(tt))
assert value.shape == mask.shape
current_loss = torch.sum(value.detach() * mask)
self.loss_mean[key][jj] += current_loss.item()
self.loss_count[jj] += mask.sum().item()
if self.current_iters % self.configs.train.log_freq[0] == 0:
if torch.any(self.loss_count == 0):
self.loss_count += 1e-4
for key in loss.keys():
self.loss_mean[key] /= self.loss_count
log_str = 'Train: {:06d}/{:06d}, MSE/LPIPS: '.format(
self.current_iters,
self.configs.train.iterations)
for jj, current_record in enumerate(record_steps):
log_str += 't({:d}):{:.1e}/{:.1e}, '.format(
current_record,
self.loss_mean['mse'][jj].item(),
self.loss_mean['lpips'][jj].item(),
)
log_str += 'lr:{:.2e}'.format(self.optimizer.param_groups[0]['lr'])
self.logger.info(log_str)
self.logging_metric(self.loss_mean, tag='Loss', phase=phase, add_global_step=True)
if self.current_iters % self.configs.train.log_freq[1] == 0:
self.logging_image(batch['lq'], tag='lq', phase=phase, add_global_step=False)
self.logging_image(batch['gt'], tag='gt', phase=phase, add_global_step=False)
x_t = self.base_diffusion.decode_first_stage(
self.base_diffusion._scale_input(z_t, tt),
self.autoencoder,
)
self.logging_image(x_t, tag='diffused', phase=phase, add_global_step=False)
self.logging_image(self.current_x0_pred, tag='x0-pred', phase=phase, add_global_step=True)
if self.current_iters % self.configs.train.save_freq == 1:
self.tic = time.time()
if self.current_iters % self.configs.train.save_freq == 0:
self.toc = time.time()
elaplsed = (self.toc - self.tic)
self.logger.info(f"Elapsed time: {elaplsed:.2f}s")
self.logger.info("="*100)
def replace_nan_in_batch(im_lq, im_gt):
'''
Input:
im_lq, im_gt: b x c x h x w
'''
if torch.isnan(im_lq).sum() > 0:
valid_index = []
im_lq = im_lq.contiguous()
for ii in range(im_lq.shape[0]):
if torch.isnan(im_lq[ii,]).sum() == 0:
valid_index.append(ii)
assert len(valid_index) > 0
im_lq, im_gt = im_lq[valid_index,], im_gt[valid_index,]
flag = True
else:
flag = False
return im_lq, im_gt, flag
def my_worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
if __name__ == '__main__':
from utils import util_image
from einops import rearrange
im1 = util_image.imread('./testdata/inpainting/val/places/Places365_val_00012685_crop000.png',
chn = 'rgb', dtype='float32')
im2 = util_image.imread('./testdata/inpainting/val/places/Places365_val_00014886_crop000.png',
chn = 'rgb', dtype='float32')
im = rearrange(np.stack((im1, im2), 3), 'h w c b -> b c h w')
im_grid = im.copy()
for alpha in [0.8, 0.4, 0.1, 0]:
im_new = im * alpha + np.random.randn(*im.shape) * (1 - alpha)
im_grid = np.concatenate((im_new, im_grid), 1)
im_grid = np.clip(im_grid, 0.0, 1.0)
im_grid = rearrange(im_grid, 'b (k c) h w -> (b k) c h w', k=5)
xx = vutils.make_grid(torch.from_numpy(im_grid), nrow=5, normalize=True, scale_each=True).numpy()
util_image.imshow(np.concatenate((im1, im2), 0))
util_image.imshow(xx.transpose((1,2,0)))
|