resshift / models /respace.py
yuhj95's picture
Upload folder using huggingface_hub
4730cdc verified
raw
history blame
4.19 kB
import numpy as np
import torch as th
from .gaussian_diffusion import GaussianDiffusion, GaussianDiffusionDDPM
def space_timesteps(num_timesteps, sample_timesteps):
"""
Create a list of timesteps to use from an original diffusion process,
given the number of timesteps we want to take from equally-sized portions
of the original process.
:param num_timesteps: the number of diffusion steps in the original
process to divide up.
:param section_counts: timesteps for sampling
:return: a set of diffusion steps from the original process to use.
"""
all_steps = [int((num_timesteps/sample_timesteps) * x) for x in range(sample_timesteps)]
return set(all_steps)
class SpacedDiffusion(GaussianDiffusion):
"""
A diffusion process which can skip steps in a base diffusion process.
:param use_timesteps: a collection (sequence or set) of timesteps from the
original diffusion process to retain.
:param kwargs: the kwargs to create the base diffusion process.
"""
def __init__(self, use_timesteps, **kwargs):
self.use_timesteps = set(use_timesteps)
self.timestep_map = []
self.original_num_steps = len(kwargs["sqrt_etas"])
base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa
new_sqrt_etas = []
for ii, etas_current in enumerate(base_diffusion.sqrt_etas):
if ii in self.use_timesteps:
new_sqrt_etas.append(etas_current)
self.timestep_map.append(ii)
kwargs["sqrt_etas"] = np.array(new_sqrt_etas)
super().__init__(**kwargs)
def p_mean_variance(self, model, *args, **kwargs): # pylint: disable=signature-differs
return super().p_mean_variance(self._wrap_model(model), *args, **kwargs)
def training_losses(self, model, *args, **kwargs): # pylint: disable=signature-differs
return super().training_losses(self._wrap_model(model), *args, **kwargs)
def _wrap_model(self, model):
if isinstance(model, _WrappedModel):
return model
return _WrappedModel(model, self.timestep_map, self.original_num_steps)
class _WrappedModel:
def __init__(self, model, timestep_map, original_num_steps):
self.model = model
self.timestep_map = timestep_map
self.original_num_steps = original_num_steps
def __call__(self, x, ts, **kwargs):
map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype)
new_ts = map_tensor[ts]
return self.model(x, new_ts, **kwargs)
class SpacedDiffusionDDPM(GaussianDiffusionDDPM):
"""
A diffusion process which can skip steps in a base diffusion process.
:param use_timesteps: a collection (sequence or set) of timesteps from the
original diffusion process to retain.
:param kwargs: the kwargs to create the base diffusion process.
"""
def __init__(self, use_timesteps, **kwargs):
self.use_timesteps = set(use_timesteps)
self.timestep_map = []
self.original_num_steps = len(kwargs["betas"])
base_diffusion = GaussianDiffusionDDPM(**kwargs) # pylint: disable=missing-kwoa
last_alpha_cumprod = 1.0
new_betas = []
for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
if i in self.use_timesteps:
new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
last_alpha_cumprod = alpha_cumprod
self.timestep_map.append(i)
kwargs["betas"] = np.array(new_betas)
super().__init__(**kwargs)
def p_mean_variance(self, model, *args, **kwargs): # pylint: disable=signature-differs
return super().p_mean_variance(self._wrap_model(model), *args, **kwargs)
def training_losses(self, model, *args, **kwargs): # pylint: disable=signature-differs
return super().training_losses(self._wrap_model(model), *args, **kwargs)
def _wrap_model(self, model):
if isinstance(model, _WrappedModel):
return model
return _WrappedModel(model, self.timestep_map, self.original_num_steps)