|
|
|
|
|
|
|
|
|
import sys |
|
import cv2 |
|
import math |
|
import torch |
|
import random |
|
import numpy as np |
|
from scipy import fft |
|
from pathlib import Path |
|
from einops import rearrange |
|
from skimage import img_as_ubyte, img_as_float32 |
|
|
|
|
|
def ssim(img1, img2): |
|
C1 = (0.01 * 255)**2 |
|
C2 = (0.03 * 255)**2 |
|
|
|
img1 = img1.astype(np.float64) |
|
img2 = img2.astype(np.float64) |
|
kernel = cv2.getGaussianKernel(11, 1.5) |
|
window = np.outer(kernel, kernel.transpose()) |
|
|
|
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] |
|
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] |
|
mu1_sq = mu1**2 |
|
mu2_sq = mu2**2 |
|
mu1_mu2 = mu1 * mu2 |
|
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq |
|
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq |
|
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 |
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * |
|
(sigma1_sq + sigma2_sq + C2)) |
|
return ssim_map.mean() |
|
|
|
def calculate_ssim(im1, im2, border=0, ycbcr=False): |
|
''' |
|
SSIM the same outputs as MATLAB's |
|
im1, im2: h x w x , [0, 255], uint8 |
|
''' |
|
if not im1.shape == im2.shape: |
|
raise ValueError('Input images must have the same dimensions.') |
|
|
|
if ycbcr: |
|
im1 = rgb2ycbcr(im1, True) |
|
im2 = rgb2ycbcr(im2, True) |
|
|
|
h, w = im1.shape[:2] |
|
im1 = im1[border:h-border, border:w-border] |
|
im2 = im2[border:h-border, border:w-border] |
|
|
|
if im1.ndim == 2: |
|
return ssim(im1, im2) |
|
elif im1.ndim == 3: |
|
if im1.shape[2] == 3: |
|
ssims = [] |
|
for i in range(3): |
|
ssims.append(ssim(im1[:,:,i], im2[:,:,i])) |
|
return np.array(ssims).mean() |
|
elif im1.shape[2] == 1: |
|
return ssim(np.squeeze(im1), np.squeeze(im2)) |
|
else: |
|
raise ValueError('Wrong input image dimensions.') |
|
|
|
def calculate_psnr(im1, im2, border=0, ycbcr=False): |
|
''' |
|
PSNR metric. |
|
im1, im2: h x w x , [0, 255], uint8 |
|
''' |
|
if not im1.shape == im2.shape: |
|
raise ValueError('Input images must have the same dimensions.') |
|
|
|
if ycbcr: |
|
im1 = rgb2ycbcr(im1, True) |
|
im2 = rgb2ycbcr(im2, True) |
|
|
|
h, w = im1.shape[:2] |
|
im1 = im1[border:h-border, border:w-border] |
|
im2 = im2[border:h-border, border:w-border] |
|
|
|
im1 = im1.astype(np.float64) |
|
im2 = im2.astype(np.float64) |
|
mse = np.mean((im1 - im2)**2) |
|
if mse == 0: |
|
return float('inf') |
|
return 20 * math.log10(255.0 / math.sqrt(mse)) |
|
|
|
def batch_PSNR(img, imclean, border=0, ycbcr=False): |
|
if ycbcr: |
|
img = rgb2ycbcrTorch(img, True) |
|
imclean = rgb2ycbcrTorch(imclean, True) |
|
Img = img.data.cpu().numpy().clip(min=0., max=1.) |
|
Iclean = imclean.data.cpu().numpy().clip(min=0., max=1.) |
|
Img = img_as_ubyte(Img) |
|
Iclean = img_as_ubyte(Iclean) |
|
PSNR = 0 |
|
h, w = Iclean.shape[2:] |
|
for i in range(Img.shape[0]): |
|
PSNR += calculate_psnr(Iclean[i,:,].transpose((1,2,0)), Img[i,:,].transpose((1,2,0)), border) |
|
return PSNR |
|
|
|
def batch_SSIM(img, imclean, border=0, ycbcr=False): |
|
if ycbcr: |
|
img = rgb2ycbcrTorch(img, True) |
|
imclean = rgb2ycbcrTorch(imclean, True) |
|
Img = img.data.cpu().numpy() |
|
Iclean = imclean.data.cpu().numpy() |
|
Img = img_as_ubyte(Img) |
|
Iclean = img_as_ubyte(Iclean) |
|
SSIM = 0 |
|
for i in range(Img.shape[0]): |
|
SSIM += calculate_ssim(Iclean[i,:,].transpose((1,2,0)), Img[i,:,].transpose((1,2,0)), border) |
|
return SSIM |
|
|
|
def normalize_np(im, mean=0.5, std=0.5, reverse=False): |
|
''' |
|
Input: |
|
im: h x w x c, numpy array |
|
Normalize: (im - mean) / std |
|
Reverse: im * std + mean |
|
|
|
''' |
|
if not isinstance(mean, (list, tuple)): |
|
mean = [mean, ] * im.shape[2] |
|
mean = np.array(mean).reshape([1, 1, im.shape[2]]) |
|
|
|
if not isinstance(std, (list, tuple)): |
|
std = [std, ] * im.shape[2] |
|
std = np.array(std).reshape([1, 1, im.shape[2]]) |
|
|
|
if not reverse: |
|
out = (im.astype(np.float32) - mean) / std |
|
else: |
|
out = im.astype(np.float32) * std + mean |
|
return out |
|
|
|
def normalize_th(im, mean=0.5, std=0.5, reverse=False): |
|
''' |
|
Input: |
|
im: b x c x h x w, torch tensor |
|
Normalize: (im - mean) / std |
|
Reverse: im * std + mean |
|
|
|
''' |
|
if not isinstance(mean, (list, tuple)): |
|
mean = [mean, ] * im.shape[1] |
|
mean = torch.tensor(mean, device=im.device).view([1, im.shape[1], 1, 1]) |
|
|
|
if not isinstance(std, (list, tuple)): |
|
std = [std, ] * im.shape[1] |
|
std = torch.tensor(std, device=im.device).view([1, im.shape[1], 1, 1]) |
|
|
|
if not reverse: |
|
out = (im - mean) / std |
|
else: |
|
out = im * std + mean |
|
return out |
|
|
|
|
|
def rgb2ycbcr(im, only_y=True): |
|
''' |
|
same as matlab rgb2ycbcr |
|
Input: |
|
im: uint8 [0,255] or float [0,1] |
|
only_y: only return Y channel |
|
''' |
|
|
|
if im.dtype == np.uint8: |
|
im_temp = im.astype(np.float64) |
|
else: |
|
im_temp = (im * 255).astype(np.float64) |
|
|
|
|
|
if only_y: |
|
rlt = np.dot(im_temp, np.array([65.481, 128.553, 24.966])/ 255.0) + 16.0 |
|
else: |
|
rlt = np.matmul(im_temp, np.array([[65.481, -37.797, 112.0 ], |
|
[128.553, -74.203, -93.786], |
|
[24.966, 112.0, -18.214]])/255.0) + [16, 128, 128] |
|
if im.dtype == np.uint8: |
|
rlt = rlt.round() |
|
else: |
|
rlt /= 255. |
|
return rlt.astype(im.dtype) |
|
|
|
def rgb2ycbcrTorch(im, only_y=True): |
|
''' |
|
same as matlab rgb2ycbcr |
|
Input: |
|
im: float [0,1], N x 3 x H x W |
|
only_y: only return Y channel |
|
''' |
|
|
|
im_temp = im.permute([0,2,3,1]) * 255.0 |
|
|
|
if only_y: |
|
rlt = torch.matmul(im_temp, torch.tensor([65.481, 128.553, 24.966], |
|
device=im.device, dtype=im.dtype).view([3,1])/ 255.0) + 16.0 |
|
else: |
|
rlt = torch.matmul(im_temp, torch.tensor([[65.481, -37.797, 112.0 ], |
|
[128.553, -74.203, -93.786], |
|
[24.966, 112.0, -18.214]], |
|
device=im.device, dtype=im.dtype)/255.0) + \ |
|
torch.tensor([16, 128, 128]).view([-1, 1, 1, 3]) |
|
rlt /= 255.0 |
|
rlt.clamp_(0.0, 1.0) |
|
return rlt.permute([0, 3, 1, 2]) |
|
|
|
def bgr2rgb(im): return cv2.cvtColor(im, cv2.COLOR_BGR2RGB) |
|
|
|
def rgb2bgr(im): return cv2.cvtColor(im, cv2.COLOR_RGB2BGR) |
|
|
|
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): |
|
"""Convert torch Tensors into image numpy arrays. |
|
|
|
After clamping to [min, max], values will be normalized to [0, 1]. |
|
|
|
Args: |
|
tensor (Tensor or list[Tensor]): Accept shapes: |
|
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); |
|
2) 3D Tensor of shape (3/1 x H x W); |
|
3) 2D Tensor of shape (H x W). |
|
Tensor channel should be in RGB order. |
|
rgb2bgr (bool): Whether to change rgb to bgr. |
|
out_type (numpy type): output types. If ``np.uint8``, transform outputs |
|
to uint8 type with range [0, 255]; otherwise, float type with |
|
range [0, 1]. Default: ``np.uint8``. |
|
min_max (tuple[int]): min and max values for clamp. |
|
|
|
Returns: |
|
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of |
|
shape (H x W). The channel order is BGR. |
|
""" |
|
if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): |
|
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') |
|
|
|
flag_tensor = torch.is_tensor(tensor) |
|
if flag_tensor: |
|
tensor = [tensor] |
|
result = [] |
|
for _tensor in tensor: |
|
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) |
|
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) |
|
|
|
n_dim = _tensor.dim() |
|
if n_dim == 4: |
|
img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() |
|
img_np = img_np.transpose(1, 2, 0) |
|
if rgb2bgr: |
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) |
|
elif n_dim == 3: |
|
img_np = _tensor.numpy() |
|
img_np = img_np.transpose(1, 2, 0) |
|
if img_np.shape[2] == 1: |
|
img_np = np.squeeze(img_np, axis=2) |
|
else: |
|
if rgb2bgr: |
|
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) |
|
elif n_dim == 2: |
|
img_np = _tensor.numpy() |
|
else: |
|
raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}') |
|
if out_type == np.uint8: |
|
|
|
img_np = (img_np * 255.0).round() |
|
img_np = img_np.astype(out_type) |
|
result.append(img_np) |
|
if len(result) == 1 and flag_tensor: |
|
result = result[0] |
|
return result |
|
|
|
def img2tensor(imgs, bgr2rgb=False, out_type=torch.float32): |
|
"""Convert image numpy arrays into torch tensor. |
|
Args: |
|
imgs (Array or list[array]): Accept shapes: |
|
3) list of numpy arrays |
|
1) 3D numpy array of shape (H x W x 3/1); |
|
2) 2D Tensor of shape (H x W). |
|
Tensor channel should be in RGB order. |
|
|
|
Returns: |
|
(array or list): 4D ndarray of shape (1 x C x H x W) |
|
""" |
|
|
|
def _img2tensor(img): |
|
if img.ndim == 2: |
|
tensor = torch.from_numpy(img[None, None,]).type(out_type) |
|
elif img.ndim == 3: |
|
if bgr2rgb: |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
tensor = torch.from_numpy(rearrange(img, 'h w c -> c h w')).type(out_type).unsqueeze(0) |
|
else: |
|
raise TypeError(f'2D or 3D numpy array expected, got{img.ndim}D array') |
|
return tensor |
|
|
|
if not (isinstance(imgs, np.ndarray) or (isinstance(imgs, list) and all(isinstance(t, np.ndarray) for t in imgs))): |
|
raise TypeError(f'Numpy array or list of numpy array expected, got {type(imgs)}') |
|
|
|
flag_numpy = isinstance(imgs, np.ndarray) |
|
if flag_numpy: |
|
imgs = [imgs,] |
|
result = [] |
|
for _img in imgs: |
|
result.append(_img2tensor(_img)) |
|
|
|
if len(result) == 1 and flag_numpy: |
|
result = result[0] |
|
return result |
|
|
|
|
|
def imresize_np(img, scale, antialiasing=True): |
|
|
|
|
|
|
|
img = torch.from_numpy(img) |
|
need_squeeze = True if img.dim() == 2 else False |
|
if need_squeeze: |
|
img.unsqueeze_(2) |
|
|
|
in_H, in_W, in_C = img.size() |
|
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) |
|
kernel_width = 4 |
|
kernel = 'cubic' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( |
|
in_H, out_H, scale, kernel, kernel_width, antialiasing) |
|
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( |
|
in_W, out_W, scale, kernel, kernel_width, antialiasing) |
|
|
|
|
|
img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C) |
|
img_aug.narrow(0, sym_len_Hs, in_H).copy_(img) |
|
|
|
sym_patch = img[:sym_len_Hs, :, :] |
|
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(0, inv_idx) |
|
img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv) |
|
|
|
sym_patch = img[-sym_len_He:, :, :] |
|
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(0, inv_idx) |
|
img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) |
|
|
|
out_1 = torch.FloatTensor(out_H, in_W, in_C) |
|
kernel_width = weights_H.size(1) |
|
for i in range(out_H): |
|
idx = int(indices_H[i][0]) |
|
for j in range(out_C): |
|
out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i]) |
|
|
|
|
|
|
|
out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C) |
|
out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1) |
|
|
|
sym_patch = out_1[:, :sym_len_Ws, :] |
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(1, inv_idx) |
|
out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv) |
|
|
|
sym_patch = out_1[:, -sym_len_We:, :] |
|
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() |
|
sym_patch_inv = sym_patch.index_select(1, inv_idx) |
|
out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) |
|
|
|
out_2 = torch.FloatTensor(out_H, out_W, in_C) |
|
kernel_width = weights_W.size(1) |
|
for i in range(out_W): |
|
idx = int(indices_W[i][0]) |
|
for j in range(out_C): |
|
out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i]) |
|
if need_squeeze: |
|
out_2.squeeze_() |
|
|
|
return out_2.numpy() |
|
|
|
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): |
|
if (scale < 1) and (antialiasing): |
|
|
|
kernel_width = kernel_width / scale |
|
|
|
|
|
x = torch.linspace(1, out_length, out_length) |
|
|
|
|
|
|
|
|
|
u = x / scale + 0.5 * (1 - 1 / scale) |
|
|
|
|
|
left = torch.floor(u - kernel_width / 2) |
|
|
|
|
|
|
|
|
|
|
|
P = math.ceil(kernel_width) + 2 |
|
|
|
|
|
|
|
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view( |
|
1, P).expand(out_length, P) |
|
|
|
|
|
|
|
distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices |
|
|
|
if (scale < 1) and (antialiasing): |
|
weights = scale * cubic(distance_to_center * scale) |
|
else: |
|
weights = cubic(distance_to_center) |
|
|
|
weights_sum = torch.sum(weights, 1).view(out_length, 1) |
|
weights = weights / weights_sum.expand(out_length, P) |
|
|
|
|
|
weights_zero_tmp = torch.sum((weights == 0), 0) |
|
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): |
|
indices = indices.narrow(1, 1, P - 2) |
|
weights = weights.narrow(1, 1, P - 2) |
|
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): |
|
indices = indices.narrow(1, 0, P - 2) |
|
weights = weights.narrow(1, 0, P - 2) |
|
weights = weights.contiguous() |
|
indices = indices.contiguous() |
|
sym_len_s = -indices.min() + 1 |
|
sym_len_e = indices.max() - in_length |
|
indices = indices + sym_len_s - 1 |
|
return weights, indices, int(sym_len_s), int(sym_len_e) |
|
|
|
|
|
def cubic(x): |
|
absx = torch.abs(x) |
|
absx2 = absx**2 |
|
absx3 = absx**3 |
|
return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \ |
|
(-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx)) |
|
|
|
|
|
def imread(path, chn='rgb', dtype='float32', force_gray2rgb=True, force_rgba2rgb=False): |
|
''' |
|
Read image. |
|
chn: 'rgb', 'bgr' or 'gray' |
|
out: |
|
im: h x w x c, numpy tensor |
|
''' |
|
try: |
|
im = cv2.imread(str(path), cv2.IMREAD_UNCHANGED) |
|
except: |
|
print(str(path)) |
|
|
|
if im is None: |
|
print(str(path)) |
|
|
|
if chn.lower() == 'gray': |
|
assert im.ndim == 2, f"{str(path)} has {im.ndim} channels!" |
|
else: |
|
if im.ndim == 2: |
|
if force_gray2rgb: |
|
im = np.stack([im, im, im], axis=2) |
|
else: |
|
raise ValueError(f"{str(path)} has {im.ndim} channels!") |
|
elif im.ndim == 4: |
|
if force_rgba2rgb: |
|
im = im[:, :, :3] |
|
else: |
|
raise ValueError(f"{str(path)} has {im.ndim} channels!") |
|
else: |
|
if chn.lower() == 'rgb': |
|
im = bgr2rgb(im) |
|
elif chn.lower() == 'bgr': |
|
pass |
|
|
|
if dtype == 'float32': |
|
im = im.astype(np.float32) / 255. |
|
elif dtype == 'float64': |
|
im = im.astype(np.float64) / 255. |
|
elif dtype == 'uint8': |
|
pass |
|
else: |
|
sys.exit('Please input corrected dtype: float32, float64 or uint8!') |
|
|
|
return im |
|
|
|
def imwrite(im_in, path, chn='rgb', dtype_in='float32', qf=None): |
|
''' |
|
Save image. |
|
Input: |
|
im: h x w x c, numpy tensor |
|
path: the saving path |
|
chn: the channel order of the im, |
|
''' |
|
im = im_in.copy() |
|
if isinstance(path, str): |
|
path = Path(path) |
|
if dtype_in != 'uint8': |
|
im = img_as_ubyte(im) |
|
|
|
if chn.lower() == 'rgb' and im.ndim == 3: |
|
im = rgb2bgr(im) |
|
|
|
if qf is not None and path.suffix.lower() in ['.jpg', '.jpeg']: |
|
flag = cv2.imwrite(str(path), im, [int(cv2.IMWRITE_JPEG_QUALITY), int(qf)]) |
|
else: |
|
flag = cv2.imwrite(str(path), im) |
|
|
|
return flag |
|
|
|
def jpeg_compress(im, qf, chn_in='rgb'): |
|
''' |
|
Input: |
|
im: h x w x 3 array |
|
qf: compress factor, (0, 100] |
|
chn_in: 'rgb' or 'bgr' |
|
Return: |
|
Compressed Image with channel order: chn_in |
|
''' |
|
|
|
im_bgr = rgb2bgr(im) if chn_in.lower() == 'rgb' else im |
|
if im.dtype != np.dtype('uint8'): im_bgr = img_as_ubyte(im_bgr) |
|
|
|
|
|
flag, encimg = cv2.imencode('.jpg', im_bgr, [int(cv2.IMWRITE_JPEG_QUALITY), qf]) |
|
assert flag |
|
im_jpg_bgr = cv2.imdecode(encimg, 1) |
|
|
|
|
|
im_out = bgr2rgb(im_jpg_bgr) if chn_in.lower() == 'rgb' else im_jpg_bgr |
|
if im.dtype != np.dtype('uint8'): im_out = img_as_float32(im_out).astype(im.dtype) |
|
return im_out |
|
|
|
|
|
def data_aug_np(image, mode): |
|
''' |
|
Performs data augmentation of the input image |
|
Input: |
|
image: a cv2 (OpenCV) image |
|
mode: int. Choice of transformation to apply to the image |
|
0 - no transformation |
|
1 - flip up and down |
|
2 - rotate counterwise 90 degree |
|
3 - rotate 90 degree and flip up and down |
|
4 - rotate 180 degree |
|
5 - rotate 180 degree and flip |
|
6 - rotate 270 degree |
|
7 - rotate 270 degree and flip |
|
''' |
|
if mode == 0: |
|
|
|
out = image |
|
elif mode == 1: |
|
|
|
out = np.flipud(image) |
|
elif mode == 2: |
|
|
|
out = np.rot90(image) |
|
elif mode == 3: |
|
|
|
out = np.rot90(image) |
|
out = np.flipud(out) |
|
elif mode == 4: |
|
|
|
out = np.rot90(image, k=2) |
|
elif mode == 5: |
|
|
|
out = np.rot90(image, k=2) |
|
out = np.flipud(out) |
|
elif mode == 6: |
|
|
|
out = np.rot90(image, k=3) |
|
elif mode == 7: |
|
|
|
out = np.rot90(image, k=3) |
|
out = np.flipud(out) |
|
else: |
|
raise Exception('Invalid choice of image transformation') |
|
|
|
return out.copy() |
|
|
|
def inverse_data_aug_np(image, mode): |
|
''' |
|
Performs inverse data augmentation of the input image |
|
''' |
|
if mode == 0: |
|
|
|
out = image |
|
elif mode == 1: |
|
out = np.flipud(image) |
|
elif mode == 2: |
|
out = np.rot90(image, axes=(1,0)) |
|
elif mode == 3: |
|
out = np.flipud(image) |
|
out = np.rot90(out, axes=(1,0)) |
|
elif mode == 4: |
|
out = np.rot90(image, k=2, axes=(1,0)) |
|
elif mode == 5: |
|
out = np.flipud(image) |
|
out = np.rot90(out, k=2, axes=(1,0)) |
|
elif mode == 6: |
|
out = np.rot90(image, k=3, axes=(1,0)) |
|
elif mode == 7: |
|
|
|
out = np.flipud(image) |
|
out = np.rot90(out, k=3, axes=(1,0)) |
|
else: |
|
raise Exception('Invalid choice of image transformation') |
|
|
|
return out |
|
|
|
|
|
def imshow(x, title=None, cbar=False): |
|
import matplotlib.pyplot as plt |
|
plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray') |
|
if title: |
|
plt.title(title) |
|
if cbar: |
|
plt.colorbar() |
|
plt.show() |
|
|
|
def imblend_with_mask(im, mask, alpha=0.25): |
|
""" |
|
Input: |
|
im, mask: h x w x c numpy array, uint8, [0, 255] |
|
alpha: scaler in [0.0, 1.0] |
|
""" |
|
edge_map = cv2.Canny(mask, 100, 200).astype(np.float32)[:, :, None] / 255. |
|
|
|
assert mask.dtype == np.uint8 |
|
mask = mask.astype(np.float32) / 255. |
|
if mask.ndim == 2: |
|
mask = mask[:, :, None] |
|
|
|
back_color = np.array([159, 121, 238], dtype=np.float32).reshape((1,1,3)) |
|
blend = im.astype(np.float32) * alpha + (1 - alpha) * back_color |
|
blend = np.clip(blend, 0, 255) |
|
out = im.astype(np.float32) * (1 - mask) + blend * mask |
|
|
|
|
|
out = out * (1 - edge_map) + np.array([0,255,0], dtype=np.float32).reshape((1,1,3)) * edge_map |
|
|
|
return out.astype(np.uint8) |
|
|
|
|
|
def imgrad(im, pading_mode='mirror'): |
|
''' |
|
Calculate image gradient. |
|
Input: |
|
im: h x w x c numpy array |
|
''' |
|
from scipy.ndimage import correlate |
|
wx = np.array([[0, 0, 0], |
|
[-1, 1, 0], |
|
[0, 0, 0]], dtype=np.float32) |
|
wy = np.array([[0, -1, 0], |
|
[0, 1, 0], |
|
[0, 0, 0]], dtype=np.float32) |
|
if im.ndim == 3: |
|
gradx = np.stack( |
|
[correlate(im[:,:,c], wx, mode=pading_mode) for c in range(im.shape[2])], |
|
axis=2 |
|
) |
|
grady = np.stack( |
|
[correlate(im[:,:,c], wy, mode=pading_mode) for c in range(im.shape[2])], |
|
axis=2 |
|
) |
|
grad = np.concatenate((gradx, grady), axis=2) |
|
else: |
|
gradx = correlate(im, wx, mode=pading_mode) |
|
grady = correlate(im, wy, mode=pading_mode) |
|
grad = np.stack((gradx, grady), axis=2) |
|
|
|
return {'gradx': gradx, 'grady': grady, 'grad':grad} |
|
|
|
def imgrad_fft(im): |
|
''' |
|
Calculate image gradient. |
|
Input: |
|
im: h x w x c numpy array |
|
''' |
|
wx = np.rot90(np.array([[0, 0, 0], |
|
[-1, 1, 0], |
|
[0, 0, 0]], dtype=np.float32), k=2) |
|
gradx = convfft(im, wx) |
|
wy = np.rot90(np.array([[0, -1, 0], |
|
[0, 1, 0], |
|
[0, 0, 0]], dtype=np.float32), k=2) |
|
grady = convfft(im, wy) |
|
grad = np.concatenate((gradx, grady), axis=2) |
|
|
|
return {'gradx': gradx, 'grady': grady, 'grad':grad} |
|
|
|
def convfft(im, weight): |
|
''' |
|
Convolution with FFT |
|
Input: |
|
im: h1 x w1 x c numpy array |
|
weight: h2 x w2 numpy array |
|
Output: |
|
out: h1 x w1 x c numpy array |
|
''' |
|
axes = (0,1) |
|
otf = psf2otf(weight, im.shape[:2]) |
|
if im.ndim == 3: |
|
otf = np.tile(otf[:, :, None], (1,1,im.shape[2])) |
|
out = fft.ifft2(fft.fft2(im, axes=axes) * otf, axes=axes).real |
|
return out |
|
|
|
def psf2otf(psf, shape): |
|
""" |
|
MATLAB psf2otf function. |
|
Borrowed from https://github.com/aboucaud/pypher/blob/master/pypher/pypher.py. |
|
Input: |
|
psf : h x w numpy array |
|
shape : list or tuple, output shape of the OTF array |
|
Output: |
|
otf : OTF array with the desirable shape |
|
""" |
|
if np.all(psf == 0): |
|
return np.zeros_like(psf) |
|
|
|
inshape = psf.shape |
|
|
|
psf = zero_pad(psf, shape, position='corner') |
|
|
|
|
|
for axis, axis_size in enumerate(inshape): |
|
psf = np.roll(psf, -int(axis_size / 2), axis=axis) |
|
|
|
|
|
otf = fft.fft2(psf) |
|
|
|
|
|
|
|
|
|
|
|
n_ops = np.sum(psf.size * np.log2(psf.shape)) |
|
otf = np.real_if_close(otf, tol=n_ops) |
|
|
|
return otf |
|
|
|
|
|
def random_crop(im, pch_size): |
|
''' |
|
Randomly crop a patch from the give image. |
|
''' |
|
h, w = im.shape[:2] |
|
|
|
if h < pch_size or w < pch_size: |
|
pad_h = min(max(0, pch_size - h), h) |
|
pad_w = min(max(0, pch_size - w), w) |
|
im = cv2.copyMakeBorder(im, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101) |
|
|
|
h, w = im.shape[:2] |
|
if h == pch_size: |
|
ind_h = 0 |
|
elif h > pch_size: |
|
ind_h = random.randint(0, h-pch_size) |
|
else: |
|
raise ValueError('Image height is smaller than the patch size') |
|
if w == pch_size: |
|
ind_w = 0 |
|
elif w > pch_size: |
|
ind_w = random.randint(0, w-pch_size) |
|
else: |
|
raise ValueError('Image width is smaller than the patch size') |
|
|
|
im_pch = im[ind_h:ind_h+pch_size, ind_w:ind_w+pch_size,] |
|
|
|
return im_pch |
|
|
|
class ToTensor: |
|
def __init__(self, max_value=1.0): |
|
self.max_value = max_value |
|
|
|
def __call__(self, im): |
|
assert isinstance(im, np.ndarray) |
|
if im.ndim == 2: |
|
im = im[:, :, np.newaxis] |
|
if im.dtype == np.uint8: |
|
assert self.max_value == 255. |
|
out = torch.from_numpy(im.astype(np.float32).transpose(2,0,1) / self.max_value) |
|
else: |
|
assert self.max_value == 1.0 |
|
out = torch.from_numpy(im.transpose(2,0,1)) |
|
return out |
|
|
|
class RandomCrop: |
|
def __init__(self, pch_size, pass_crop=False): |
|
self.pch_size = pch_size |
|
self.pass_crop = pass_crop |
|
|
|
def __call__(self, im): |
|
if self.pass_crop: |
|
return im |
|
if isinstance(im, list) or isinstance(im, tuple): |
|
out = [] |
|
for current_im in im: |
|
out.append(random_crop(current_im, self.pch_size)) |
|
else: |
|
out = random_crop(im, self.pch_size) |
|
return out |
|
|
|
class ImageSpliterNp: |
|
def __init__(self, im, pch_size, stride, sf=1): |
|
''' |
|
Input: |
|
im: h x w x c, numpy array, [0, 1], low-resolution image in SR |
|
pch_size, stride: patch setting |
|
sf: scale factor in image super-resolution |
|
''' |
|
assert stride <= pch_size |
|
self.stride = stride |
|
self.pch_size = pch_size |
|
self.sf = sf |
|
|
|
if im.ndim == 2: |
|
im = im[:, :, None] |
|
|
|
height, width, chn = im.shape |
|
self.height_starts_list = self.extract_starts(height) |
|
self.width_starts_list = self.extract_starts(width) |
|
self.length = self.__len__() |
|
self.num_pchs = 0 |
|
|
|
self.im_ori = im |
|
self.im_res = np.zeros([height*sf, width*sf, chn], dtype=im.dtype) |
|
self.pixel_count = np.zeros([height*sf, width*sf, chn], dtype=im.dtype) |
|
|
|
def extract_starts(self, length): |
|
starts = list(range(0, length, self.stride)) |
|
if starts[-1] + self.pch_size > length: |
|
starts[-1] = length - self.pch_size |
|
return starts |
|
|
|
def __len__(self): |
|
return len(self.height_starts_list) * len(self.width_starts_list) |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def __next__(self): |
|
if self.num_pchs < self.length: |
|
w_start_idx = self.num_pchs // len(self.height_starts_list) |
|
w_start = self.width_starts_list[w_start_idx] * self.sf |
|
w_end = w_start + self.pch_size * self.sf |
|
|
|
h_start_idx = self.num_pchs % len(self.height_starts_list) |
|
h_start = self.height_starts_list[h_start_idx] * self.sf |
|
h_end = h_start + self.pch_size * self.sf |
|
|
|
pch = self.im_ori[h_start:h_end, w_start:w_end,] |
|
self.w_start, self.w_end = w_start, w_end |
|
self.h_start, self.h_end = h_start, h_end |
|
|
|
self.num_pchs += 1 |
|
else: |
|
raise StopIteration(0) |
|
|
|
return pch, (h_start, h_end, w_start, w_end) |
|
|
|
def update(self, pch_res, index_infos): |
|
''' |
|
Input: |
|
pch_res: pch_size x pch_size x 3, [0,1] |
|
index_infos: (h_start, h_end, w_start, w_end) |
|
''' |
|
if index_infos is None: |
|
w_start, w_end = self.w_start, self.w_end |
|
h_start, h_end = self.h_start, self.h_end |
|
else: |
|
h_start, h_end, w_start, w_end = index_infos |
|
|
|
self.im_res[h_start:h_end, w_start:w_end] += pch_res |
|
self.pixel_count[h_start:h_end, w_start:w_end] += 1 |
|
|
|
def gather(self): |
|
assert np.all(self.pixel_count != 0) |
|
return self.im_res / self.pixel_count |
|
|
|
class ImageSpliterTh: |
|
def __init__(self, im, pch_size, stride, sf=1, extra_bs=1): |
|
''' |
|
Input: |
|
im: n x c x h x w, torch tensor, float, low-resolution image in SR |
|
pch_size, stride: patch setting |
|
sf: scale factor in image super-resolution |
|
pch_bs: aggregate pchs to processing, only used when inputing single image |
|
''' |
|
assert stride <= pch_size |
|
self.stride = stride |
|
self.pch_size = pch_size |
|
self.sf = sf |
|
self.extra_bs = extra_bs |
|
|
|
bs, chn, height, width= im.shape |
|
self.true_bs = bs |
|
|
|
self.height_starts_list = self.extract_starts(height) |
|
self.width_starts_list = self.extract_starts(width) |
|
self.starts_list = [] |
|
for ii in self.height_starts_list: |
|
for jj in self.width_starts_list: |
|
self.starts_list.append([ii, jj]) |
|
|
|
self.length = self.__len__() |
|
self.count_pchs = 0 |
|
|
|
self.im_ori = im |
|
self.im_res = torch.zeros([bs, chn, height*sf, width*sf], dtype=im.dtype, device=im.device) |
|
self.pixel_count = torch.zeros([bs, chn, height*sf, width*sf], dtype=im.dtype, device=im.device) |
|
|
|
def extract_starts(self, length): |
|
if length <= self.pch_size: |
|
starts = [0,] |
|
else: |
|
starts = list(range(0, length, self.stride)) |
|
for ii in range(len(starts)): |
|
if starts[ii] + self.pch_size > length: |
|
starts[ii] = length - self.pch_size |
|
starts = sorted(set(starts), key=starts.index) |
|
return starts |
|
|
|
def __len__(self): |
|
return len(self.height_starts_list) * len(self.width_starts_list) |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def __next__(self): |
|
if self.count_pchs < self.length: |
|
index_infos = [] |
|
current_starts_list = self.starts_list[self.count_pchs:self.count_pchs+self.extra_bs] |
|
for ii, (h_start, w_start) in enumerate(current_starts_list): |
|
w_end = w_start + self.pch_size |
|
h_end = h_start + self.pch_size |
|
current_pch = self.im_ori[:, :, h_start:h_end, w_start:w_end] |
|
if ii == 0: |
|
pch = current_pch |
|
else: |
|
pch = torch.cat([pch, current_pch], dim=0) |
|
|
|
h_start *= self.sf |
|
h_end *= self.sf |
|
w_start *= self.sf |
|
w_end *= self.sf |
|
index_infos.append([h_start, h_end, w_start, w_end]) |
|
|
|
self.count_pchs += len(current_starts_list) |
|
else: |
|
raise StopIteration() |
|
|
|
return pch, index_infos |
|
|
|
def update(self, pch_res, index_infos): |
|
''' |
|
Input: |
|
pch_res: (n*extra_bs) x c x pch_size x pch_size, float |
|
index_infos: [(h_start, h_end, w_start, w_end),] |
|
''' |
|
assert pch_res.shape[0] % self.true_bs == 0 |
|
pch_list = torch.split(pch_res, self.true_bs, dim=0) |
|
assert len(pch_list) == len(index_infos) |
|
for ii, (h_start, h_end, w_start, w_end) in enumerate(index_infos): |
|
current_pch = pch_list[ii] |
|
self.im_res[:, :, h_start:h_end, w_start:w_end] += current_pch |
|
self.pixel_count[:, :, h_start:h_end, w_start:w_end] += 1 |
|
|
|
def gather(self): |
|
assert torch.all(self.pixel_count != 0) |
|
return self.im_res.div(self.pixel_count) |
|
|
|
|
|
class Clamper: |
|
def __init__(self, min_max=(-1, 1)): |
|
self.min_bound, self.max_bound = min_max[0], min_max[1] |
|
|
|
def __call__(self, im): |
|
if isinstance(im, np.ndarray): |
|
return np.clip(im, a_min=self.min_bound, a_max=self.max_bound) |
|
elif isinstance(im, torch.Tensor): |
|
return torch.clamp(im, min=self.min_bound, max=self.max_bound) |
|
else: |
|
raise TypeError(f'ndarray or Tensor expected, got {type(im)}') |
|
|
|
|
|
class Bicubic: |
|
def __init__(self, scale=None, out_shape=None, activate_matlab=True, resize_back=False): |
|
self.scale = scale |
|
self.activate_matlab = activate_matlab |
|
self.out_shape = out_shape |
|
self.resize_back = resize_back |
|
|
|
def __call__(self, im): |
|
if self.activate_matlab: |
|
out = imresize_np(im, scale=self.scale) |
|
if self.resize_back: |
|
out = imresize_np(out, scale=1/self.scale) |
|
else: |
|
out = cv2.resize( |
|
im, |
|
dsize=self.out_shape, |
|
fx=self.scale, |
|
fy=self.scale, |
|
interpolation=cv2.INTER_CUBIC, |
|
) |
|
if self.resize_back: |
|
out = cv2.resize( |
|
out, |
|
dsize=self.out_shape, |
|
fx=1/self.scale, |
|
fy=1/self.scale, |
|
interpolation=cv2.INTER_CUBIC, |
|
) |
|
return out |
|
|
|
class SmallestMaxSize: |
|
def __init__(self, max_size=256, interpolation=None, pass_smallmaxresize=False): |
|
from albumentations import SmallestMaxSize |
|
self.resizer = SmallestMaxSize( |
|
max_size=max_size, |
|
interpolation=cv2.INTER_CUBIC if interpolation is None else interpolation |
|
) |
|
self.pass_smallmaxresize = pass_smallmaxresize |
|
|
|
def __call__(self, im): |
|
if self.pass_smallmaxresize: |
|
out = im |
|
else: |
|
out = self.resizer(image=im)['image'] |
|
return out |
|
|
|
|
|
class SpatialAug: |
|
def __init__(self, pass_aug, only_hflip=False, only_vflip=False, only_hvflip=False): |
|
self.only_hflip = only_hflip |
|
self.only_vflip = only_vflip |
|
self.only_hvflip = only_hvflip |
|
self.pass_aug = pass_aug |
|
|
|
def __call__(self, im, flag=None): |
|
if self.pass_aug: |
|
return im |
|
|
|
if flag is None: |
|
if self.only_hflip: |
|
flag = random.choice([0, 5]) |
|
elif self.only_vflip: |
|
flag = random.choice([0, 1]) |
|
elif self.only_hvflip: |
|
flag = random.choice([0, 1, 5]) |
|
else: |
|
flag = random.randint(0, 7) |
|
|
|
if isinstance(im, list) or isinstance(im, tuple): |
|
out = [] |
|
for current_im in im: |
|
out.append(data_aug_np(current_im, flag)) |
|
else: |
|
out = data_aug_np(im, flag) |
|
return out |
|
|
|
if __name__ == '__main__': |
|
im = np.random.randn(64, 64, 3).astype(np.float32) |
|
|
|
grad1 = imgrad(im)['grad'] |
|
grad2 = imgrad_fft(im)['grad'] |
|
|
|
error = np.abs(grad1 -grad2).max() |
|
mean_error = np.abs(grad1 -grad2).mean() |
|
print('The largest error is {:.2e}'.format(error)) |
|
print('The mean error is {:.2e}'.format(mean_error)) |
|
|