resshift / basicsr /data /realesrgan_dataset.py
yuhj95's picture
Upload folder using huggingface_hub
4730cdc verified
raw
history blame
16.3 kB
import cv2
import math
import numpy as np
import os
import os.path as osp
import random
import time
import torch
from pathlib import Path
import albumentations
import torch.nn.functional as F
from torch.utils import data as data
from basicsr.utils import DiffJPEG
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
from basicsr.data.transforms import augment
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
from basicsr.utils.registry import DATASET_REGISTRY
from basicsr.utils.img_process_util import filter2D
from basicsr.data.transforms import paired_random_crop
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
def readline_txt(txt_file):
txt_file = [txt_file, ] if isinstance(txt_file, str) else txt_file
out = []
for txt_file_current in txt_file:
with open(txt_file_current, 'r') as ff:
out.extend([x[:-1] for x in ff.readlines()])
return out
@DATASET_REGISTRY.register(suffix='basicsr')
class RealESRGANDataset(data.Dataset):
"""Dataset used for Real-ESRGAN model:
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
It loads gt (Ground-Truth) images, and augments them.
It also generates blur kernels and sinc kernels for generating low-quality images.
Note that the low-quality images are processed in tensors on GPUS for faster processing.
Args:
opt (dict): Config for train datasets. It contains the following keys:
dataroot_gt (str): Data root path for gt.
meta_info (str): Path for meta information file.
io_backend (dict): IO backend type and other kwarg.
use_hflip (bool): Use horizontal flips.
use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
Please see more options in the codes.
"""
def __init__(self, opt, mode='training'):
super(RealESRGANDataset, self).__init__()
self.opt = opt
self.file_client = None
self.io_backend_opt = opt['io_backend']
# file client (lmdb io backend)
self.paths = []
if 'dir_paths' in opt:
for current_dir in opt['dir_paths']:
for current_ext in opt['im_exts']:
self.paths.extend(sorted([str(x) for x in Path(current_dir).glob(f'**/*.{current_ext}')]))
if 'txt_file_path' in opt:
for current_txt in opt['txt_file_path']:
self.paths.extend(readline_txt(current_txt))
if 'length' in opt:
self.paths = random.sample(self.paths, opt['length'])
# blur settings for the first degradation
self.blur_kernel_size = opt['blur_kernel_size']
self.kernel_list = opt['kernel_list']
self.kernel_prob = opt['kernel_prob'] # a list for each kernel probability
self.blur_sigma = opt['blur_sigma']
self.betag_range = opt['betag_range'] # betag used in generalized Gaussian blur kernels
self.betap_range = opt['betap_range'] # betap used in plateau blur kernels
self.sinc_prob = opt['sinc_prob'] # the probability for sinc filters
# blur settings for the second degradation
self.blur_kernel_size2 = opt['blur_kernel_size2']
self.kernel_list2 = opt['kernel_list2']
self.kernel_prob2 = opt['kernel_prob2']
self.blur_sigma2 = opt['blur_sigma2']
self.betag_range2 = opt['betag_range2']
self.betap_range2 = opt['betap_range2']
self.sinc_prob2 = opt['sinc_prob2']
# a final sinc filter
self.final_sinc_prob = opt['final_sinc_prob']
self.kernel_range1 = [x for x in range(3, opt['blur_kernel_size'], 2)] # kernel size ranges from 7 to 21
self.kernel_range2 = [x for x in range(3, opt['blur_kernel_size2'], 2)] # kernel size ranges from 7 to 21
# TODO: kernel range is now hard-coded, should be in the configure file
# convolving with pulse tensor brings no blurry effect
self.pulse_tensor = torch.zeros(opt['blur_kernel_size2'], opt['blur_kernel_size2']).float()
self.pulse_tensor[opt['blur_kernel_size2']//2, opt['blur_kernel_size2']//2] = 1
self.mode = mode
self.rescale_gt = opt['rescale_gt']
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
# -------------------------------- Load gt images -------------------------------- #
# Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32.
gt_path = self.paths[index]
# avoid errors caused by high latency in reading files
retry = 3
while retry > 0:
try:
img_bytes = self.file_client.get(gt_path, 'gt')
img_gt = imfrombytes(img_bytes, float32=True)
# except (IOError, OSError, AttributeError) as e:
except:
# logger = get_root_logger()
# logger.warn(f'File client error: {e}, remaining retry times: {retry - 1}')
# change another file to read
index = random.randint(0, self.__len__())
gt_path = self.paths[index]
time.sleep(1) # sleep 1s for occasional server congestion
# else:
# break
finally:
retry -= 1
if self.mode == 'testing':
if not hasattr(self, 'test_aug'):
self.test_aug = albumentations.Compose([
albumentations.SmallestMaxSize(max_size=self.opt['gt_size']),
albumentations.CenterCrop(self.opt['gt_size'], self.opt['gt_size']),
])
img_gt = self.test_aug(image=img_gt)['image']
elif self.mode == 'training':
pass
else:
raise ValueError(f'Unexpected value {self.mode} for mode parameter')
if self.mode == 'training':
# -------------------- Do augmentation for training: flip, rotation -------------------- #
img_gt = augment(img_gt, self.opt['use_hflip'], self.opt['use_rot'])
# crop or pad to 400
# TODO: 400 is hard-coded. You may change it accordingly
h, w = img_gt.shape[0:2]
if self.rescale_gt:
crop_pad_size = max(min(h, w), self.opt['gt_size'])
else:
crop_pad_size = self.opt['crop_pad_size']
# pad
# if h < crop_pad_size or w < crop_pad_size:
# pad_h = max(0, crop_pad_size - h)
# pad_w = max(0, crop_pad_size - w)
# img_gt = cv2.copyMakeBorder(img_gt, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101)
while h < crop_pad_size or w < crop_pad_size:
pad_h = min(max(0, crop_pad_size - h), h)
pad_w = min(max(0, crop_pad_size - w), w)
img_gt = cv2.copyMakeBorder(img_gt, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101)
h, w = img_gt.shape[0:2]
# crop
if img_gt.shape[0] > crop_pad_size or img_gt.shape[1] > crop_pad_size:
h, w = img_gt.shape[0:2]
# randomly choose top and left coordinates
top = random.randint(0, h - crop_pad_size)
left = random.randint(0, w - crop_pad_size)
img_gt = img_gt[top:top + crop_pad_size, left:left + crop_pad_size, ...]
if self.rescale_gt and crop_pad_size != self.opt['gt_size']:
img_gt = cv2.resize(img_gt, dsize=(self.opt['gt_size'],)*2, interpolation=cv2.INTER_AREA)
elif self.mode == 'testing':
pass
else:
raise ValueError(f'Unexpected value {self.mode} for mode parameter')
# ------------------------ Generate kernels (used in the first degradation) ------------------------ #
kernel_size = random.choice(self.kernel_range1)
if np.random.uniform() < self.opt['sinc_prob']:
# this sinc filter setting is for kernels ranging from [7, 21]
if kernel_size < 13:
omega_c = np.random.uniform(np.pi / 3, np.pi)
else:
omega_c = np.random.uniform(np.pi / 5, np.pi)
kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
else:
kernel = random_mixed_kernels(
self.kernel_list,
self.kernel_prob,
kernel_size,
self.blur_sigma,
self.blur_sigma, [-math.pi, math.pi],
self.betag_range,
self.betap_range,
noise_range=None)
# pad kernel
pad_size = (self.blur_kernel_size - kernel_size) // 2
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
# ------------------------ Generate kernels (used in the second degradation) ------------------------ #
kernel_size = random.choice(self.kernel_range2)
if np.random.uniform() < self.opt['sinc_prob2']:
if kernel_size < 13:
omega_c = np.random.uniform(np.pi / 3, np.pi)
else:
omega_c = np.random.uniform(np.pi / 5, np.pi)
kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
else:
kernel2 = random_mixed_kernels(
self.kernel_list2,
self.kernel_prob2,
kernel_size,
self.blur_sigma2,
self.blur_sigma2, [-math.pi, math.pi],
self.betag_range2,
self.betap_range2,
noise_range=None)
# pad kernel
pad_size = (self.blur_kernel_size2 - kernel_size) // 2
kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))
# ------------------------------------- the final sinc kernel ------------------------------------- #
if np.random.uniform() < self.opt['final_sinc_prob']:
kernel_size = random.choice(self.kernel_range2)
omega_c = np.random.uniform(np.pi / 3, np.pi)
sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=self.blur_kernel_size2)
sinc_kernel = torch.FloatTensor(sinc_kernel)
else:
sinc_kernel = self.pulse_tensor
# BGR to RGB, HWC to CHW, numpy to tensor
img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0]
kernel = torch.FloatTensor(kernel)
kernel2 = torch.FloatTensor(kernel2)
return_d = {'gt': img_gt, 'kernel1': kernel, 'kernel2': kernel2, 'sinc_kernel': sinc_kernel, 'gt_path': gt_path}
return return_d
def __len__(self):
return len(self.paths)
def degrade_fun(self, conf_degradation, im_gt, kernel1, kernel2, sinc_kernel):
if not hasattr(self, 'jpeger'):
self.jpeger = DiffJPEG(differentiable=False) # simulate JPEG compression artifacts
ori_h, ori_w = im_gt.size()[2:4]
sf = conf_degradation.sf
# ----------------------- The first degradation process ----------------------- #
# blur
out = filter2D(im_gt, kernel1)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
conf_degradation['resize_prob'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, conf_degradation['resize_range'][1])
elif updown_type == 'down':
scale = random.uniform(conf_degradation['resize_range'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(out, scale_factor=scale, mode=mode)
# add noise
gray_noise_prob = conf_degradation['gray_noise_prob']
if random.random() < conf_degradation['gaussian_noise_prob']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=conf_degradation['noise_range'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=conf_degradation['poisson_scale_range'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*conf_degradation['jpeg_range'])
out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts
out = self.jpeger(out, quality=jpeg_p)
# ----------------------- The second degradation process ----------------------- #
# blur
if random.random() < conf_degradation['second_order_prob']:
if random.random() < conf_degradation['second_blur_prob']:
out = filter2D(out, kernel2)
# random resize
updown_type = random.choices(
['up', 'down', 'keep'],
conf_degradation['resize_prob2'],
)[0]
if updown_type == 'up':
scale = random.uniform(1, conf_degradation['resize_range2'][1])
elif updown_type == 'down':
scale = random.uniform(conf_degradation['resize_range2'][0], 1)
else:
scale = 1
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(int(ori_h / sf * scale), int(ori_w / sf * scale)),
mode=mode,
)
# add noise
gray_noise_prob = conf_degradation['gray_noise_prob2']
if random.random() < conf_degradation['gaussian_noise_prob2']:
out = random_add_gaussian_noise_pt(
out,
sigma_range=conf_degradation['noise_range2'],
clip=True,
rounds=False,
gray_prob=gray_noise_prob,
)
else:
out = random_add_poisson_noise_pt(
out,
scale_range=conf_degradation['poisson_scale_range2'],
gray_prob=gray_noise_prob,
clip=True,
rounds=False,
)
# JPEG compression + the final sinc filter
# We also need to resize images to desired sizes. We group [resize back + sinc filter] together
# as one operation.
# We consider two orders:
# 1. [resize back + sinc filter] + JPEG compression
# 2. JPEG compression + [resize back + sinc filter]
# Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
if random.random() < 0.5:
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(ori_h // sf, ori_w // sf),
mode=mode,
)
out = filter2D(out, sinc_kernel)
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*conf_degradation['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
else:
# JPEG compression
jpeg_p = out.new_zeros(out.size(0)).uniform_(*conf_degradation['jpeg_range2'])
out = torch.clamp(out, 0, 1)
out = self.jpeger(out, quality=jpeg_p)
# resize back + the final sinc filter
mode = random.choice(['area', 'bilinear', 'bicubic'])
out = F.interpolate(
out,
size=(ori_h // sf, ori_w // sf),
mode=mode,
)
out = filter2D(out, sinc_kernel)
# clamp and round
im_lq = torch.clamp((out * 255.0).round(), 0, 255) / 255.
return {'lq':im_lq.contiguous(), 'gt':im_gt}