resshift / models /gaussian_diffusion.py
yuhj95's picture
Upload folder using huggingface_hub
4730cdc verified
raw
history blame
48.5 kB
import enum
import math
import torch
import numpy as np
import torch as th
import torch.nn.functional as F
from .basic_ops import mean_flat
from .losses import normal_kl, discretized_gaussian_log_likelihood
from ldm.models.autoencoder import AutoencoderKLTorch
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps, beta_start, beta_end):
"""
Get a pre-defined beta schedule for the given name.
The beta schedule library consists of beta schedules which remain similar
in the limit of num_diffusion_timesteps.
Beta schedules may be added, but should not be removed or changed once
they are committed to maintain backwards compatibility.
"""
if schedule_name == "linear":
# Linear schedule from Ho et al, extended to work for any number of
# diffusion steps.
return np.linspace(
beta_start**0.5, beta_end**0.5, num_diffusion_timesteps, dtype=np.float64
)**2
else:
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
def get_named_eta_schedule(
schedule_name,
num_diffusion_timesteps,
min_noise_level,
etas_end=0.99,
kappa=1.0,
kwargs=None):
"""
Get a pre-defined eta schedule for the given name.
The eta schedule library consists of eta schedules which remain similar
in the limit of num_diffusion_timesteps.
"""
if schedule_name == 'exponential':
# ponential = kwargs.get('ponential', None)
# start = math.exp(math.log(min_noise_level / kappa) / ponential)
# end = math.exp(math.log(etas_end) / (2*ponential))
# xx = np.linspace(start, end, num_diffusion_timesteps, endpoint=True, dtype=np.float64)
# sqrt_etas = xx**ponential
power = kwargs.get('power', None)
# etas_start = min(min_noise_level / kappa, min_noise_level, math.sqrt(0.001))
etas_start = min(min_noise_level / kappa, min_noise_level)
increaser = math.exp(1/(num_diffusion_timesteps-1)*math.log(etas_end/etas_start))
base = np.ones([num_diffusion_timesteps, ]) * increaser
power_timestep = np.linspace(0, 1, num_diffusion_timesteps, endpoint=True)**power
power_timestep *= (num_diffusion_timesteps-1)
sqrt_etas = np.power(base, power_timestep) * etas_start
elif schedule_name == 'ldm':
import scipy.io as sio
mat_path = kwargs.get('mat_path', None)
sqrt_etas = sio.loadmat(mat_path)['sqrt_etas'].reshape(-1)
else:
raise ValueError(f"Unknow schedule_name {schedule_name}")
return sqrt_etas
class ModelMeanType(enum.Enum):
"""
Which type of output the model predicts.
"""
START_X = enum.auto() # the model predicts x_0
EPSILON = enum.auto() # the model predicts epsilon
PREVIOUS_X = enum.auto() # the model predicts epsilon
RESIDUAL = enum.auto() # the model predicts epsilon
EPSILON_SCALE = enum.auto() # the model predicts epsilon
class LossType(enum.Enum):
MSE = enum.auto() # simplied MSE
WEIGHTED_MSE = enum.auto() # weighted mse derived from KL
class ModelVarTypeDDPM(enum.Enum):
"""
What is used as the model's output variance.
"""
LEARNED = enum.auto()
LEARNED_RANGE = enum.auto()
FIXED_LARGE = enum.auto()
FIXED_SMALL = enum.auto()
def _extract_into_tensor(arr, timesteps, broadcast_shape):
"""
Extract values from a 1-D numpy array for a batch of indices.
:param arr: the 1-D numpy array.
:param timesteps: a tensor of indices into the array to extract.
:param broadcast_shape: a larger shape of K dimensions with the batch
dimension equal to the length of timesteps.
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
"""
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
while len(res.shape) < len(broadcast_shape):
res = res[..., None]
return res.expand(broadcast_shape)
class GaussianDiffusion:
"""
Utilities for training and sampling diffusion models.
:param sqrt_etas: a 1-D numpy array of etas for each diffusion timestep,
starting at T and going to 1.
:param kappa: a scaler controling the variance of the diffusion kernel
:param model_mean_type: a ModelMeanType determining what the model outputs.
:param loss_type: a LossType determining the loss function to use.
model so that they are always scaled like in the
original paper (0 to 1000).
:param scale_factor: a scaler to scale the latent code
:param sf: super resolution factor
"""
def __init__(
self,
*,
sqrt_etas,
kappa,
model_mean_type,
loss_type,
sf=4,
scale_factor=None,
normalize_input=True,
latent_flag=True,
):
self.kappa = kappa
self.model_mean_type = model_mean_type
self.loss_type = loss_type
self.scale_factor = scale_factor
self.normalize_input = normalize_input
self.latent_flag = latent_flag
self.sf = sf
# Use float64 for accuracy.
self.sqrt_etas = sqrt_etas
self.etas = sqrt_etas**2
assert len(self.etas.shape) == 1, "etas must be 1-D"
assert (self.etas > 0).all() and (self.etas <= 1).all()
self.num_timesteps = int(self.etas.shape[0])
self.etas_prev = np.append(0.0, self.etas[:-1])
self.alpha = self.etas - self.etas_prev
# calculations for posterior q(x_{t-1} | x_t, x_0)
self.posterior_variance = kappa**2 * self.etas_prev / self.etas * self.alpha
self.posterior_variance_clipped = np.append(
self.posterior_variance[1], self.posterior_variance[1:]
)
# log calculation clipped because the posterior variance is 0 at the
# beginning of the diffusion chain.
self.posterior_log_variance_clipped = np.log(self.posterior_variance_clipped)
self.posterior_mean_coef1 = self.etas_prev / self.etas
self.posterior_mean_coef2 = self.alpha / self.etas
# weight for the mse loss
if model_mean_type in [ModelMeanType.START_X, ModelMeanType.RESIDUAL]:
weight_loss_mse = 0.5 / self.posterior_variance_clipped * (self.alpha / self.etas)**2
elif model_mean_type in [ModelMeanType.EPSILON, ModelMeanType.EPSILON_SCALE] :
weight_loss_mse = 0.5 / self.posterior_variance_clipped * (
kappa * self.alpha / ((1-self.etas) * self.sqrt_etas)
)**2
else:
raise NotImplementedError(model_mean_type)
# self.weight_loss_mse = np.append(weight_loss_mse[1], weight_loss_mse[1:])
self.weight_loss_mse = weight_loss_mse
def q_mean_variance(self, x_start, y, t):
"""
Get the distribution q(x_t | x_0).
:param x_start: the [N x C x ...] tensor of noiseless inputs.
:param y: the [N x C x ...] tensor of degraded inputs.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
"""
mean = _extract_into_tensor(self.etas, t, x_start.shape) * (y - x_start) + x_start
variance = _extract_into_tensor(self.etas, t, x_start.shape) * self.kappa**2
log_variance = variance.log()
return mean, variance, log_variance
def q_sample(self, x_start, y, t, noise=None):
"""
Diffuse the data for a given number of diffusion steps.
In other words, sample from q(x_t | x_0).
:param x_start: the initial data batch.
:param y: the [N x C x ...] tensor of degraded inputs.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:param noise: if specified, the split-out normal noise.
:return: A noisy version of x_start.
"""
if noise is None:
noise = th.randn_like(x_start)
assert noise.shape == x_start.shape
return (
_extract_into_tensor(self.etas, t, x_start.shape) * (y - x_start) + x_start
+ _extract_into_tensor(self.sqrt_etas * self.kappa, t, x_start.shape) * noise
)
def q_posterior_mean_variance(self, x_start, x_t, t):
"""
Compute the mean and variance of the diffusion posterior:
q(x_{t-1} | x_t, x_0)
"""
assert x_start.shape == x_t.shape
posterior_mean = (
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_t
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_start
)
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = _extract_into_tensor(
self.posterior_log_variance_clipped, t, x_t.shape
)
assert (
posterior_mean.shape[0]
== posterior_variance.shape[0]
== posterior_log_variance_clipped.shape[0]
== x_start.shape[0]
)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(
self, model, x_t, y, t,
clip_denoised=True,
denoised_fn=None,
model_kwargs=None
):
"""
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
the initial x, x_0.
:param model: the model, which takes a signal and a batch of timesteps
as input.
:param x_t: the [N x C x ...] tensor at time t.
:param y: the [N x C x ...] tensor of degraded inputs.
:param t: a 1-D Tensor of timesteps.
:param clip_denoised: if True, clip the denoised signal into [-1, 1].
:param denoised_fn: if not None, a function which applies to the
x_start prediction before it is used to sample. Applies before
clip_denoised.
:param model_kwargs: if not None, a dict of extra keyword arguments to
pass to the model. This can be used for conditioning.
:return: a dict with the following keys:
- 'mean': the model mean output.
- 'variance': the model variance output.
- 'log_variance': the log of 'variance'.
- 'pred_xstart': the prediction for x_0.
"""
if model_kwargs is None:
model_kwargs = {}
B, C = x_t.shape[:2]
assert t.shape == (B,)
model_output = model(self._scale_input(x_t, t), t, **model_kwargs)
model_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
model_log_variance = _extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
def process_xstart(x):
if denoised_fn is not None:
x = denoised_fn(x)
if clip_denoised:
return x.clamp(-1, 1)
return x
if self.model_mean_type == ModelMeanType.START_X: # predict x_0
pred_xstart = process_xstart(model_output)
elif self.model_mean_type == ModelMeanType.RESIDUAL: # predict x_0
pred_xstart = process_xstart(
self._predict_xstart_from_residual(y=y, residual=model_output)
)
elif self.model_mean_type == ModelMeanType.EPSILON:
pred_xstart = process_xstart(
self._predict_xstart_from_eps(x_t=x_t, y=y, t=t, eps=model_output)
) # predict \eps
elif self.model_mean_type == ModelMeanType.EPSILON_SCALE:
pred_xstart = process_xstart(
self._predict_xstart_from_eps_scale(x_t=x_t, y=y, t=t, eps=model_output)
) # predict \eps
else:
raise ValueError(f'Unknown Mean type: {self.model_mean_type}')
model_mean, _, _ = self.q_posterior_mean_variance(
x_start=pred_xstart, x_t=x_t, t=t
)
assert (
model_mean.shape == model_log_variance.shape == pred_xstart.shape == x_t.shape
)
return {
"mean": model_mean,
"variance": model_variance,
"log_variance": model_log_variance,
"pred_xstart": pred_xstart,
}
def _predict_xstart_from_eps(self, x_t, y, t, eps):
assert x_t.shape == eps.shape
return (
x_t - _extract_into_tensor(self.sqrt_etas, t, x_t.shape) * self.kappa * eps
- _extract_into_tensor(self.etas, t, x_t.shape) * y
) / _extract_into_tensor(1 - self.etas, t, x_t.shape)
def _predict_xstart_from_eps_scale(self, x_t, y, t, eps):
assert x_t.shape == eps.shape
return (
x_t - eps - _extract_into_tensor(self.etas, t, x_t.shape) * y
) / _extract_into_tensor(1 - self.etas, t, x_t.shape)
def _predict_xstart_from_residual(self, y, residual):
assert y.shape == residual.shape
return (y - residual)
def _predict_eps_from_xstart(self, x_t, y, t, pred_xstart):
return (
x_t - _extract_into_tensor(1 - self.etas, t, x_t.shape) * pred_xstart
- _extract_into_tensor(self.etas, t, x_t.shape) * y
) / _extract_into_tensor(self.kappa * self.sqrt_etas, t, x_t.shape)
def p_sample(self, model, x, y, t, clip_denoised=True, denoised_fn=None, model_kwargs=None, noise_repeat=False):
"""
Sample x_{t-1} from the model at the given timestep.
:param model: the model to sample from.
:param x: the current tensor at x_t.
:param y: the [N x C x ...] tensor of degraded inputs.
:param t: the value of t, starting at 0 for the first diffusion step.
:param clip_denoised: if True, clip the x_start prediction to [-1, 1].
:param denoised_fn: if not None, a function which applies to the
x_start prediction before it is used to sample.
:param model_kwargs: if not None, a dict of extra keyword arguments to
pass to the model. This can be used for conditioning.
:return: a dict containing the following keys:
- 'sample': a random sample from the model.
- 'pred_xstart': a prediction of x_0.
"""
out = self.p_mean_variance(
model,
x,
y,
t,
clip_denoised=clip_denoised,
denoised_fn=denoised_fn,
model_kwargs=model_kwargs,
)
noise = th.randn_like(x)
if noise_repeat:
noise = noise[0,].repeat(x.shape[0], 1, 1, 1)
nonzero_mask = (
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
) # no noise when t == 0
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise
return {"sample": sample, "pred_xstart": out["pred_xstart"], "mean":out["mean"]}
def p_sample_loop(
self,
y,
model,
first_stage_model=None,
consistencydecoder=None,
noise=None,
noise_repeat=False,
clip_denoised=True,
denoised_fn=None,
model_kwargs=None,
device=None,
progress=False,
):
"""
Generate samples from the model.
:param y: the [N x C x ...] tensor of degraded inputs.
:param model: the model module.
:param first_stage_model: the autoencoder model
:param noise: if specified, the noise from the encoder to sample.
Should be of the same shape as `shape`.
:param clip_denoised: if True, clip x_start predictions to [-1, 1].
:param denoised_fn: if not None, a function which applies to the
x_start prediction before it is used to sample.
:param model_kwargs: if not None, a dict of extra keyword arguments to
pass to the model. This can be used for conditioning.
:param device: if specified, the device to create the samples on.
If not specified, use a model parameter's device.
:param progress: if True, show a tqdm progress bar.
:return: a non-differentiable batch of samples.
"""
final = None
for sample in self.p_sample_loop_progressive(
y,
model,
first_stage_model=first_stage_model,
noise=noise,
noise_repeat=noise_repeat,
clip_denoised=clip_denoised,
denoised_fn=denoised_fn,
model_kwargs=model_kwargs,
device=device,
progress=progress,
):
final = sample["sample"]
with th.no_grad():
out = self.decode_first_stage(
final,
first_stage_model=first_stage_model,
consistencydecoder=consistencydecoder,
)
return out
def p_sample_loop_progressive(
self, y, model,
first_stage_model=None,
noise=None,
noise_repeat=False,
clip_denoised=True,
denoised_fn=None,
model_kwargs=None,
device=None,
progress=False,
):
"""
Generate samples from the model and yield intermediate samples from
each timestep of diffusion.
Arguments are the same as p_sample_loop().
Returns a generator over dicts, where each dict is the return value of
p_sample().
"""
if device is None:
device = next(model.parameters()).device
z_y = self.encode_first_stage(y, first_stage_model, up_sample=True)
# generating noise
if noise is None:
noise = th.randn_like(z_y)
if noise_repeat:
noise = noise[0,].repeat(z_y.shape[0], 1, 1, 1)
z_sample = self.prior_sample(z_y, noise)
indices = list(range(self.num_timesteps))[::-1]
if progress:
# Lazy import so that we don't depend on tqdm.
from tqdm.auto import tqdm
indices = tqdm(indices)
for i in indices:
t = th.tensor([i] * y.shape[0], device=device)
with th.no_grad():
out = self.p_sample(
model,
z_sample,
z_y,
t,
clip_denoised=clip_denoised,
denoised_fn=denoised_fn,
model_kwargs=model_kwargs,
noise_repeat=noise_repeat,
)
yield out
z_sample = out["sample"]
def decode_first_stage(self, z_sample, first_stage_model=None, consistencydecoder=None):
batch_size = z_sample.shape[0]
data_dtype = z_sample.dtype
if consistencydecoder is None:
model = first_stage_model
decoder = first_stage_model.decode
model_dtype = next(model.parameters()).dtype
else:
model = consistencydecoder
decoder = consistencydecoder
model_dtype = next(model.ckpt.parameters()).dtype
if first_stage_model is None:
return z_sample
else:
z_sample = 1 / self.scale_factor * z_sample
if consistencydecoder is None:
out = decoder(z_sample.type(model_dtype))
else:
with th.cuda.amp.autocast():
out = decoder(z_sample)
if not model_dtype == data_dtype:
out = out.type(data_dtype)
return out
def encode_first_stage(self, y, first_stage_model, up_sample=False):
data_dtype = y.dtype
model_dtype = next(first_stage_model.parameters()).dtype
if up_sample and self.sf != 1:
y = F.interpolate(y, scale_factor=self.sf, mode='bicubic')
if first_stage_model is None:
return y
else:
if not model_dtype == data_dtype:
y = y.type(model_dtype)
with th.no_grad():
z_y = first_stage_model.encode(y)
out = z_y * self.scale_factor
if not model_dtype == data_dtype:
out = out.type(data_dtype)
return out
def prior_sample(self, y, noise=None):
"""
Generate samples from the prior distribution, i.e., q(x_T|x_0) ~= N(x_T|y, ~)
:param y: the [N x C x ...] tensor of degraded inputs.
:param noise: the [N x C x ...] tensor of degraded inputs.
"""
if noise is None:
noise = th.randn_like(y)
t = th.tensor([self.num_timesteps-1,] * y.shape[0], device=y.device).long()
return y + _extract_into_tensor(self.kappa * self.sqrt_etas, t, y.shape) * noise
def training_losses(
self, model, x_start, y, t,
first_stage_model=None,
model_kwargs=None,
noise=None,
):
"""
Compute training losses for a single timestep.
:param model: the model to evaluate loss on.
:param first_stage_model: autoencoder model
:param x_start: the [N x C x ...] tensor of inputs.
:param y: the [N x C x ...] tensor of degraded inputs.
:param t: a batch of timestep indices.
:param model_kwargs: if not None, a dict of extra keyword arguments to
pass to the model. This can be used for conditioning.
:param noise: if specified, the specific Gaussian noise to try to remove.
:param up_sample_lq: Upsampling low-quality image before encoding
:return: a dict with the key "loss" containing a tensor of shape [N].
Some mean or variance settings may also have other keys.
"""
if model_kwargs is None:
model_kwargs = {}
z_y = self.encode_first_stage(y, first_stage_model, up_sample=True)
z_start = self.encode_first_stage(x_start, first_stage_model, up_sample=False)
if noise is None:
noise = th.randn_like(z_start)
z_t = self.q_sample(z_start, z_y, t, noise=noise)
terms = {}
if self.loss_type == LossType.MSE or self.loss_type == LossType.WEIGHTED_MSE:
model_output = model(self._scale_input(z_t, t), t, **model_kwargs)
target = {
ModelMeanType.START_X: z_start,
ModelMeanType.RESIDUAL: z_y - z_start,
ModelMeanType.EPSILON: noise,
ModelMeanType.EPSILON_SCALE: noise*self.kappa*_extract_into_tensor(self.sqrt_etas, t, noise.shape),
}[self.model_mean_type]
assert model_output.shape == target.shape == z_start.shape
terms["mse"] = mean_flat((target - model_output) ** 2)
if self.model_mean_type == ModelMeanType.EPSILON_SCALE:
terms["mse"] /= (self.kappa**2 * _extract_into_tensor(self.etas, t, t.shape))
if self.loss_type == LossType.WEIGHTED_MSE:
weights = _extract_into_tensor(self.weight_loss_mse, t, t.shape)
else:
weights = 1
terms["mse"] *= weights
else:
raise NotImplementedError(self.loss_type)
if self.model_mean_type == ModelMeanType.START_X: # predict x_0
pred_zstart = model_output
elif self.model_mean_type == ModelMeanType.EPSILON:
pred_zstart = self._predict_xstart_from_eps(x_t=z_t, y=z_y, t=t, eps=model_output)
elif self.model_mean_type == ModelMeanType.RESIDUAL:
pred_zstart = self._predict_xstart_from_residual(y=z_y, residual=model_output)
elif self.model_mean_type == ModelMeanType.EPSILON_SCALE:
pred_zstart = self._predict_xstart_from_eps_scale(x_t=z_t, y=z_y, t=t, eps=model_output)
else:
raise NotImplementedError(self.model_mean_type)
return terms, z_t, pred_zstart
def _scale_input(self, inputs, t):
if self.normalize_input:
if self.latent_flag:
# the variance of latent code is around 1.0
std = th.sqrt(_extract_into_tensor(self.etas, t, inputs.shape) * self.kappa**2 + 1)
inputs_norm = inputs / std
else:
inputs_max = _extract_into_tensor(self.sqrt_etas, t, inputs.shape) * self.kappa * 3 + 1
inputs_norm = inputs / inputs_max
else:
inputs_norm = inputs
return inputs_norm
class GaussianDiffusionDDPM:
"""
Utilities for training and sampling diffusion models.
Ported directly from here, and then adapted over time to further experimentation.
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
:param betas: a 1-D numpy array of betas for each diffusion timestep,
starting at T and going to 1.
:param model_mean_type: a ModelMeanType determining what the model outputs.
:param model_var_type: a ModelVarTypeDDPM determining how variance is output.
:param loss_type: a LossType determining the loss function to use.
:param rescale_timesteps: if True, pass floating point timesteps into the
model so that they are always scaled like in the
original paper (0 to 1000).
"""
def __init__(
self,
*,
betas,
model_mean_type,
model_var_type,
scale_factor=None,
sf=4,
):
self.model_mean_type = model_mean_type # EPSILON
self.model_var_type = model_var_type # LEARNED_RANGE
self.scale_factor = scale_factor # scale factor in latent space default True
self.sf=sf
# Use float64 for accuracy.
betas = np.array(betas, dtype=np.float64)
self.betas = betas
assert len(betas.shape) == 1, "betas must be 1-D"
assert (betas > 0).all() and (betas <= 1).all()
self.num_timesteps = int(betas.shape[0])
alphas = 1.0 - betas
self.alphas_cumprod = np.cumprod(alphas, axis=0)
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
# calculations for posterior q(x_{t-1} | x_t, x_0)
self.posterior_variance = (
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
)
# log calculation clipped because the posterior variance is 0 at the
# beginning of the diffusion chain.
self.posterior_log_variance_clipped = np.log(
np.append(self.posterior_variance[1], self.posterior_variance[1:])
)
self.posterior_mean_coef1 = (
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
)
self.posterior_mean_coef2 = (
(1.0 - self.alphas_cumprod_prev)
* np.sqrt(alphas)
/ (1.0 - self.alphas_cumprod)
)
def q_mean_variance(self, x_start, t):
"""
Get the distribution q(x_t | x_0).
:param x_start: the [N x C x ...] tensor of noiseless inputs.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
"""
mean = (
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
)
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
log_variance = _extract_into_tensor(
self.log_one_minus_alphas_cumprod, t, x_start.shape
)
return mean, variance, log_variance
def q_sample(self, x_start, t, noise=None):
"""
Diffuse the data for a given number of diffusion steps.
In other words, sample from q(x_t | x_0).
:param x_start: the initial data batch.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:param noise: if specified, the split-out normal noise.
:return: A noisy version of x_start.
"""
if noise is None:
noise = th.randn_like(x_start)
assert noise.shape == x_start.shape
return (
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
* noise
)
def q_posterior_mean_variance(self, x_start, x_t, t):
"""
Compute the mean and variance of the diffusion posterior:
q(x_{t-1} | x_t, x_0)
"""
assert x_start.shape == x_t.shape
posterior_mean = (
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = _extract_into_tensor(
self.posterior_log_variance_clipped, t, x_t.shape
)
assert (
posterior_mean.shape[0]
== posterior_variance.shape[0]
== posterior_log_variance_clipped.shape[0]
== x_start.shape[0]
)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(
self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
):
"""
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
the initial x, x_0.
:param model: the model, which takes a signal and a batch of timesteps
as input.
:param x: the [N x C x ...] tensor at time t.
:param t: a 1-D Tensor of timesteps.
:param clip_denoised: if True, clip the denoised signal into [-1, 1].
:param denoised_fn: if not None, a function which applies to the
x_start prediction before it is used to sample. Applies before
clip_denoised.
:param model_kwargs: if not None, a dict of extra keyword arguments to
pass to the model. This can be used for conditioning.
:return: a dict with the following keys:
- 'mean': the model mean output.
- 'variance': the model variance output.
- 'log_variance': the log of 'variance'.
- 'pred_xstart': the prediction for x_0.
"""
if model_kwargs is None:
model_kwargs = {}
B, C = x.shape[:2]
assert t.shape == (B,)
model_output = model(x, t, **model_kwargs)
if self.model_var_type in [ModelVarTypeDDPM.LEARNED, ModelVarTypeDDPM.LEARNED_RANGE]:
assert model_output.shape == (B, C * 2, *x.shape[2:])
model_output, model_var_values = th.split(model_output, C, dim=1)
if self.model_var_type == ModelVarTypeDDPM.LEARNED:
model_log_variance = model_var_values
model_variance = th.exp(model_log_variance)
else:
min_log = _extract_into_tensor(
self.posterior_log_variance_clipped, t, x.shape
)
max_log = _extract_into_tensor(np.log(self.betas), t, x.shape)
# The model_var_values is [-1, 1] for [min_var, max_var].
frac = (model_var_values + 1) / 2
model_log_variance = frac * max_log + (1 - frac) * min_log
model_variance = th.exp(model_log_variance)
else:
model_variance, model_log_variance = {
# for fixedlarge, we set the initial (log-)variance like so
# to get a better decoder log likelihood.
ModelVarTypeDDPM.FIXED_LARGE: (
np.append(self.posterior_variance[1], self.betas[1:]),
np.log(np.append(self.posterior_variance[1], self.betas[1:])),
),
ModelVarTypeDDPM.FIXED_SMALL: (
self.posterior_variance,
self.posterior_log_variance_clipped,
),
}[self.model_var_type]
model_variance = _extract_into_tensor(model_variance, t, x.shape)
model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape)
def process_xstart(x):
if denoised_fn is not None:
x = denoised_fn(x)
if clip_denoised:
return x.clamp(-1, 1)
return x
if self.model_mean_type == ModelMeanType.PREVIOUS_X: # predict x_{t-1}
pred_xstart = process_xstart(
self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output)
)
model_mean = model_output
elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]:
if self.model_mean_type == ModelMeanType.START_X: # predict x_0
pred_xstart = process_xstart(model_output)
else:
pred_xstart = process_xstart(
self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)
) # predict \eps
model_mean, _, _ = self.q_posterior_mean_variance(
x_start=pred_xstart, x_t=x, t=t
)
else:
raise NotImplementedError(self.model_mean_type)
assert (
model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
)
return {
"mean": model_mean,
"variance": model_variance,
"log_variance": model_log_variance,
"pred_xstart": pred_xstart,
}
def _predict_xstart_from_eps(self, x_t, t, eps):
assert x_t.shape == eps.shape
return (
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
)
def _predict_xstart_from_xprev(self, x_t, t, xprev):
assert x_t.shape == xprev.shape
return ( # (xprev - coef2*x_t) / coef1
_extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev
- _extract_into_tensor(
self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape
)
* x_t
)
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
return (
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
- pred_xstart
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
def p_sample(
self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
):
"""
Sample x_{t-1} from the model at the given timestep.
:param model: the model to sample from.
:param x: the current tensor at x_{t-1}.
:param t: the value of t, starting at 0 for the first diffusion step.
:param clip_denoised: if True, clip the x_start prediction to [-1, 1].
:param denoised_fn: if not None, a function which applies to the
x_start prediction before it is used to sample.
:param model_kwargs: if not None, a dict of extra keyword arguments to
pass to the model. This can be used for conditioning.
:return: a dict containing the following keys:
- 'sample': a random sample from the model.
- 'pred_xstart': a prediction of x_0.
"""
out = self.p_mean_variance(
model,
x,
t,
clip_denoised=clip_denoised,
denoised_fn=denoised_fn,
model_kwargs=model_kwargs,
)
noise = th.randn_like(x)
nonzero_mask = (
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
) # no noise when t == 0
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
def p_sample_loop(
self,
model,
shape,
noise=None,
clip_denoised=True,
denoised_fn=None,
first_stage_model=None,
model_kwargs=None,
device=None,
progress=False,
):
"""
Generate samples from the model.
:param model: the model module.
:param shape: the shape of the samples, (N, C, H, W).
:param noise: if specified, the noise from the encoder to sample.
Should be of the same shape as `shape`.
:param clip_denoised: if True, clip x_start predictions to [-1, 1].
:param denoised_fn: if not None, a function which applies to the
x_start prediction before it is used to sample.
:param model_kwargs: if not None, a dict of extra keyword arguments to
pass to the model. This can be used for conditioning.
:param device: if specified, the device to create the samples on.
If not specified, use a model parameter's device.
:param progress: if True, show a tqdm progress bar.
:return: a non-differentiable batch of samples.
"""
final = None
for sample in self.p_sample_loop_progressive(
model,
shape,
noise=noise,
clip_denoised=clip_denoised,
denoised_fn=denoised_fn,
model_kwargs=model_kwargs,
device=device,
progress=progress,
):
final = sample
return self.decode_first_stage(final["sample"], first_stage_model)
def p_sample_loop_progressive(
self,
model,
shape,
noise=None,
clip_denoised=True,
denoised_fn=None,
model_kwargs=None,
device=None,
progress=False,
):
"""
Generate samples from the model and yield intermediate samples from
each timestep of diffusion.
Arguments are the same as p_sample_loop().
Returns a generator over dicts, where each dict is the return value of
p_sample().
"""
if device is None:
device = next(model.parameters()).device
assert isinstance(shape, (tuple, list))
if noise is not None:
img = noise
else:
img = th.randn(*shape, device=device)
indices = list(range(self.num_timesteps))[::-1]
if progress:
# Lazy import so that we don't depend on tqdm.
from tqdm.auto import tqdm
indices = tqdm(indices)
for i in indices:
t = th.tensor([i] * shape[0], device=device)
with th.no_grad():
out = self.p_sample(
model,
img,
t,
clip_denoised=clip_denoised,
denoised_fn=denoised_fn,
model_kwargs=model_kwargs,
)
yield out
img = out["sample"]
def ddim_sample(
self,
model,
x,
t,
clip_denoised=True,
denoised_fn=None,
model_kwargs=None,
eta=0.0,
):
"""
Sample x_{t-1} from the model using DDIM.
Same usage as p_sample().
"""
out = self.p_mean_variance(
model,
x,
t,
clip_denoised=clip_denoised,
denoised_fn=denoised_fn,
model_kwargs=model_kwargs,
)
# Usually our model outputs epsilon, but we re-derive it
# in case we used x_start or x_prev prediction.
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"])
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape)
sigma = (
eta
* th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar))
* th.sqrt(1 - alpha_bar / alpha_bar_prev)
)
# Equation 12.
noise = th.randn_like(x)
mean_pred = (
out["pred_xstart"] * th.sqrt(alpha_bar_prev)
+ th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps
)
nonzero_mask = (
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
) # no noise when t == 0
sample = mean_pred + nonzero_mask * sigma * noise
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
def ddim_reverse_sample(
self,
model,
x,
t,
clip_denoised=True,
denoised_fn=None,
model_kwargs=None,
eta=0.0,
):
"""
Sample x_{t+1} from the model using DDIM reverse ODE.
"""
assert eta == 0.0, "Reverse ODE only for deterministic path"
out = self.p_mean_variance(
model,
x,
t,
clip_denoised=clip_denoised,
denoised_fn=denoised_fn,
model_kwargs=model_kwargs,
)
# Usually our model outputs epsilon, but we re-derive it
# in case we used x_start or x_prev prediction.
eps = (
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
- out["pred_xstart"]
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape)
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape)
# Equation 12. reversed
mean_pred = (
out["pred_xstart"] * th.sqrt(alpha_bar_next)
+ th.sqrt(1 - alpha_bar_next) * eps
)
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]}
def ddim_sample_loop(
self,
model,
shape,
noise=None,
first_stage_model=None,
clip_denoised=True,
denoised_fn=None,
model_kwargs=None,
device=None,
progress=False,
eta=0.0,
):
"""
Generate samples from the model using DDIM.
Same usage as p_sample_loop().
"""
final = None
for sample in self.ddim_sample_loop_progressive(
model,
shape,
noise=noise,
clip_denoised=clip_denoised,
denoised_fn=denoised_fn,
model_kwargs=model_kwargs,
device=device,
progress=progress,
eta=eta,
):
final = sample
return self.decode_first_stage(final["sample"], first_stage_model)
def ddim_sample_loop_progressive(
self,
model,
shape,
noise=None,
clip_denoised=True,
denoised_fn=None,
model_kwargs=None,
device=None,
progress=False,
eta=0.0,
):
"""
Use DDIM to sample from the model and yield intermediate samples from
each timestep of DDIM.
Same usage as p_sample_loop_progressive().
"""
if device is None:
device = next(model.parameters()).device
assert isinstance(shape, (tuple, list))
if noise is not None:
img = noise
else:
img = th.randn(*shape, device=device)
indices = list(range(self.num_timesteps))[::-1]
if progress:
# Lazy import so that we don't depend on tqdm.
from tqdm.auto import tqdm
indices = tqdm(indices)
for i in indices:
t = th.tensor([i] * shape[0], device=device).long()
with th.no_grad():
out = self.ddim_sample(
model,
img,
t,
clip_denoised=clip_denoised,
denoised_fn=denoised_fn,
model_kwargs=model_kwargs,
eta=eta,
)
yield out
img = out["sample"]
def training_losses(self, model, x_start, t, first_stage_model=None, model_kwargs=None, noise=None):
"""
Compute training losses for a single timestep.
:param model: the model to evaluate loss on.
:param x_start: the [N x C x ...] tensor of inputs.
:param t: a batch of timestep indices.
:param model_kwargs: if not None, a dict of extra keyword arguments to
pass to the model. This can be used for conditioning.
:param noise: if specified, the specific Gaussian noise to try to remove.
:return: a dict with the key "loss" containing a tensor of shape [N].
Some mean or variance settings may also have other keys.
"""
if model_kwargs is None:
model_kwargs = {}
z_start = self.encode_first_stage(x_start, first_stage_model)
if noise is None:
noise = th.randn_like(z_start)
z_t = self.q_sample(z_start, t, noise=noise)
terms = {}
model_output = model(z_t, t, **model_kwargs)
target = {
ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance(
x_start=z_start, x_t=z_t, t=t
)[0],
ModelMeanType.START_X: z_start,
ModelMeanType.EPSILON: noise,
}[self.model_mean_type]
assert model_output.shape == target.shape == z_start.shape
terms["mse"] = mean_flat((target - model_output) ** 2)
terms["loss"] = terms["mse"]
if self.model_mean_type == ModelMeanType.START_X: # predict x_0
pred_zstart = model_output.detach()
elif self.model_mean_type == ModelMeanType.EPSILON:
pred_zstart = self._predict_xstart_from_eps(x_t=z_t, t=t, eps=model_output.detach())
else:
raise NotImplementedError(self.model_mean_type)
return terms, z_t, pred_zstart
def _prior_bpd(self, x_start):
"""
Get the prior KL term for the variational lower-bound, measured in
bits-per-dim.
This term can't be optimized, as it only depends on the encoder.
:param x_start: the [N x C x ...] tensor of inputs.
:return: a batch of [N] KL values (in bits), one per batch element.
"""
batch_size = x_start.shape[0]
t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) # q(x_t|x_0)
kl_prior = normal_kl(
mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0
)
return mean_flat(kl_prior) / np.log(2.0)
def _scale_input(self, inputs, t):
return inputs
def decode_first_stage(self, z_sample, first_stage_model=None):
ori_dtype = z_sample.dtype
if first_stage_model is None:
return z_sample
else:
with th.no_grad():
z_sample = 1 / self.scale_factor * z_sample
z_sample = z_sample.type(next(first_stage_model.parameters()).dtype)
out = first_stage_model.decode(z_sample)
return out.type(ori_dtype)
def encode_first_stage(self, y, first_stage_model, up_sample=False):
ori_dtype = y.dtype
if up_sample:
y = F.interpolate(y, scale_factor=self.sf, mode='bicubic')
if first_stage_model is None:
return y
else:
with th.no_grad():
y = y.type(dtype=next(first_stage_model.parameters()).dtype)
z_y = first_stage_model.encode(y)
out = z_y * self.scale_factor
return out.type(ori_dtype)