|
|
|
|
|
|
|
|
|
import sys |
|
from pathlib import Path |
|
sys.path.append(str(Path(__file__).parents[1])) |
|
|
|
import os |
|
import torch |
|
import random |
|
import argparse |
|
import numpy as np |
|
from omegaconf import OmegaConf |
|
|
|
from basicsr.data.realesrgan_dataset import RealESRGANDataset |
|
from utils import util_image |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"-i", |
|
"--indir", |
|
type=str, |
|
default="/mnt/lustre/share/zhangwenwei/data/imagenet/val", |
|
help="Folder to save the checkpoints and training log", |
|
) |
|
parser.add_argument( |
|
"-o", |
|
"--outdir", |
|
type=str, |
|
default="./ImageNet-Test", |
|
help="Folder to save the checkpoints and training log", |
|
) |
|
args = parser.parse_args() |
|
|
|
img_list = sorted([x for x in Path(args.indir).glob('**/*.JPEG')]) |
|
print(f'Number of images in imagenet validation dataset: {len(img_list)}') |
|
|
|
random.seed(10000) |
|
random.shuffle(img_list) |
|
|
|
gt_dir = Path(args.outdir) / 'gt' |
|
if not gt_dir.exists(): |
|
gt_dir.mkdir(parents=True) |
|
lq_dir = Path(args.outdir) / 'lq' |
|
if not lq_dir.exists(): |
|
lq_dir.mkdir(parents=True) |
|
|
|
num_imgs = 3000 |
|
configs = OmegaConf.load('./configs/degradation_testing_realesrgan.yaml') |
|
opts, opts_degradation = configs.opts, configs.degradation |
|
opts['dir_paths'] = [args.indir, ] |
|
opts['length'] = num_imgs |
|
dataset = RealESRGANDataset(opts, mode='testing') |
|
for ii in range(num_imgs): |
|
data_dict1 = dataset.__getitem__(ii) |
|
if (ii + 1) % 100 == 0: |
|
print(f'Processing: {ii+1}/{num_imgs}') |
|
prefix = 'realesrgan' |
|
data_dict2 = dataset.degrade_fun( |
|
opts_degradation, |
|
im_gt=data_dict1['gt'].unsqueeze(0), |
|
kernel1=data_dict1['kernel1'], |
|
kernel2=data_dict1['kernel2'], |
|
sinc_kernel=data_dict1['sinc_kernel'], |
|
) |
|
im_lq, im_gt = data_dict2['lq'], data_dict2['gt'] |
|
im_lq, im_gt = util_image.tensor2img([im_lq, im_gt], rgb2bgr=True, min_max=(0,1) ) |
|
|
|
im_name = Path(data_dict1['gt_path']).stem |
|
im_path_gt = gt_dir / f'{im_name}.png' |
|
util_image.imwrite(im_gt, im_path_gt, chn='bgr', dtype_in='uint8') |
|
|
|
im_path_lq = lq_dir / f'{im_name}.png' |
|
util_image.imwrite(im_lq, im_path_lq, chn='bgr', dtype_in='uint8') |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|