|
trainer: |
|
target: trainer.TrainerDifIRLPIPS |
|
|
|
autoencoder: |
|
target: ldm.models.autoencoder.VQModelTorch |
|
ckpt_path: weights/autoencoder/autoencoder_vq_f4.pth |
|
use_fp16: True |
|
params: |
|
embed_dim: 3 |
|
n_embed: 8192 |
|
ddconfig: |
|
double_z: False |
|
z_channels: 3 |
|
resolution: 256 |
|
in_channels: 3 |
|
out_ch: 3 |
|
ch: 128 |
|
ch_mult: |
|
- 1 |
|
- 2 |
|
- 4 |
|
num_res_blocks: 2 |
|
attn_resolutions: [] |
|
dropout: 0.0 |
|
padding_mode: zeros |
|
|
|
model: |
|
target: models.unet.UNetModelSwin |
|
ckpt_path: ~ |
|
params: |
|
image_size: 64 |
|
in_channels: 3 |
|
model_channels: 160 |
|
out_channels: 3 |
|
attention_resolutions: [64,32,16,8] |
|
dropout: 0 |
|
channel_mult: [1, 2, 2, 4] |
|
num_res_blocks: [2, 2, 2, 2] |
|
conv_resample: True |
|
dims: 2 |
|
use_fp16: False |
|
num_head_channels: 32 |
|
use_scale_shift_norm: True |
|
resblock_updown: False |
|
swin_depth: 2 |
|
swin_embed_dim: 192 |
|
window_size: 8 |
|
mlp_ratio: 4 |
|
cond_lq: True |
|
lq_size: 64 |
|
|
|
diffusion: |
|
target: models.script_util.create_gaussian_diffusion |
|
params: |
|
sf: 4 |
|
schedule_name: exponential |
|
schedule_kwargs: |
|
power: 0.3 |
|
etas_end: 0.99 |
|
steps: 4 |
|
min_noise_level: 0.2 |
|
kappa: 2.0 |
|
weighted_mse: False |
|
predict_type: xstart |
|
timestep_respacing: ~ |
|
scale_factor: 1.0 |
|
normalize_input: True |
|
latent_flag: True |
|
|
|
data: |
|
train: |
|
type: bicubic |
|
params: |
|
source_path: ~ |
|
source_txt_path: |
|
- /mnt/sfs-common/zsyue/database/ImageNet/files_txt/path_train_all.txt |
|
- /mnt/sfs-common/zsyue/database/FFHQ/files_txt/files256.txt |
|
degrade_kwargs: |
|
scale: 0.25 |
|
activate_matlab: True |
|
resize_back: False |
|
pch_size: 256 |
|
pass_smallmaxresize: False |
|
pass_aug: False |
|
pass_crop: False |
|
transform_type: default |
|
transform_kwargs: |
|
mean: 0.5 |
|
std: 0.5 |
|
length: ~ |
|
need_path: False |
|
im_exts: JPEG |
|
recursive: False |
|
val: |
|
type: bicubic |
|
params: |
|
source_path: /mnt/sfs-common/zsyue/projects/ResShift/SR/testingdata/imagenet256/gt |
|
degrade_kwargs: |
|
scale: 0.25 |
|
activate_matlab: True |
|
resize_back: False |
|
pch_size: 256 |
|
pass_smallmaxresize: True |
|
pass_aug: True |
|
pass_crop: True |
|
transform_type: default |
|
transform_kwargs: |
|
mean: 0.5 |
|
std: 0.5 |
|
length: 64 |
|
need_path: False |
|
im_exts: png |
|
recursive: False |
|
|
|
train: |
|
|
|
lr: 5e-5 |
|
lr_min: 2e-5 |
|
lr_schedule: cosin |
|
warmup_iterations: 5000 |
|
|
|
batch: [96, 8] |
|
microbatch: 12 |
|
num_workers: 6 |
|
prefetch_factor: 2 |
|
|
|
weight_decay: 0 |
|
ema_rate: 0.999 |
|
iterations: 400000 |
|
|
|
save_freq: 10000 |
|
log_freq: [1000, 2000, 1] |
|
loss_coef: [1.0, 1.0] |
|
local_logging: True |
|
tf_logging: False |
|
|
|
use_ema_val: True |
|
val_freq: ${train.save_freq} |
|
val_y_channel: True |
|
val_resolution: ${model.params.lq_size} |
|
val_padding_mode: reflect |
|
|
|
use_amp: True |
|
seed: 123456 |
|
global_seeding: False |
|
|
|
compile: |
|
flag: True |
|
mode: reduce-overhead |
|
|