resshift / configs /bicx4_swinunet_lpips.yaml
yuhj95's picture
Upload folder using huggingface_hub
4730cdc verified
trainer:
target: trainer.TrainerDifIRLPIPS
autoencoder:
target: ldm.models.autoencoder.VQModelTorch
ckpt_path: weights/autoencoder/autoencoder_vq_f4.pth
use_fp16: True
params:
embed_dim: 3
n_embed: 8192
ddconfig:
double_z: False
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
padding_mode: zeros
model:
target: models.unet.UNetModelSwin
ckpt_path: ~
params:
image_size: 64
in_channels: 3
model_channels: 160
out_channels: 3
attention_resolutions: [64,32,16,8]
dropout: 0
channel_mult: [1, 2, 2, 4]
num_res_blocks: [2, 2, 2, 2]
conv_resample: True
dims: 2
use_fp16: False
num_head_channels: 32
use_scale_shift_norm: True
resblock_updown: False
swin_depth: 2
swin_embed_dim: 192
window_size: 8
mlp_ratio: 4
cond_lq: True
lq_size: 64
diffusion:
target: models.script_util.create_gaussian_diffusion
params:
sf: 4
schedule_name: exponential
schedule_kwargs:
power: 0.3
etas_end: 0.99
steps: 4
min_noise_level: 0.2
kappa: 2.0
weighted_mse: False
predict_type: xstart
timestep_respacing: ~
scale_factor: 1.0
normalize_input: True
latent_flag: True
data:
train:
type: bicubic
params:
source_path: ~
source_txt_path:
- /mnt/sfs-common/zsyue/database/ImageNet/files_txt/path_train_all.txt
- /mnt/sfs-common/zsyue/database/FFHQ/files_txt/files256.txt
degrade_kwargs:
scale: 0.25
activate_matlab: True
resize_back: False
pch_size: 256
pass_smallmaxresize: False
pass_aug: False
pass_crop: False
transform_type: default
transform_kwargs:
mean: 0.5
std: 0.5
length: ~
need_path: False
im_exts: JPEG
recursive: False
val:
type: bicubic
params:
source_path: /mnt/sfs-common/zsyue/projects/ResShift/SR/testingdata/imagenet256/gt
degrade_kwargs:
scale: 0.25
activate_matlab: True
resize_back: False
pch_size: 256
pass_smallmaxresize: True
pass_aug: True
pass_crop: True
transform_type: default
transform_kwargs:
mean: 0.5
std: 0.5
length: 64
need_path: False
im_exts: png
recursive: False
train:
# learning rate
lr: 5e-5 # learning rate
lr_min: 2e-5 # learning rate
lr_schedule: cosin
warmup_iterations: 5000
# dataloader
batch: [96, 8]
microbatch: 12
num_workers: 6
prefetch_factor: 2
# optimization settings
weight_decay: 0
ema_rate: 0.999
iterations: 400000 # total iterations
# save logging
save_freq: 10000
log_freq: [1000, 2000, 1] # [training loss, training images, val images]
loss_coef: [1.0, 1.0] # [mse, lpips]
local_logging: True # manually save images
tf_logging: False # tensorboard logging
# validation settings
use_ema_val: True
val_freq: ${train.save_freq}
val_y_channel: True
val_resolution: ${model.params.lq_size}
val_padding_mode: reflect
# training setting
use_amp: True # amp training
seed: 123456 # random seed
global_seeding: False
# model compile
compile:
flag: True
mode: reduce-overhead # default, reduce-overhead