|
|
|
import numpy as np |
|
import cv2 |
|
import torch |
|
|
|
from functools import partial |
|
import random |
|
from scipy import ndimage |
|
import scipy |
|
import scipy.stats as ss |
|
from scipy.interpolate import interp2d |
|
from scipy.linalg import orth |
|
import albumentations |
|
|
|
from . import utils_image as util |
|
|
|
""" |
|
# -------------------------------------------- |
|
# Super-Resolution |
|
# -------------------------------------------- |
|
# |
|
# Kai Zhang ([email protected]) |
|
# https://github.com/cszn |
|
# From 2019/03--2021/08 |
|
# -------------------------------------------- |
|
""" |
|
|
|
|
|
def modcrop_np(img, sf): |
|
''' |
|
Args: |
|
img: numpy image, WxH or WxHxC |
|
sf: scale factor |
|
Return: |
|
cropped image |
|
''' |
|
w, h = img.shape[:2] |
|
im = np.copy(img) |
|
return im[:w - w % sf, :h - h % sf, ...] |
|
|
|
|
|
""" |
|
# -------------------------------------------- |
|
# anisotropic Gaussian kernels |
|
# -------------------------------------------- |
|
""" |
|
|
|
|
|
def analytic_kernel(k): |
|
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)""" |
|
k_size = k.shape[0] |
|
|
|
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2)) |
|
|
|
for r in range(k_size): |
|
for c in range(k_size): |
|
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k |
|
|
|
crop = k_size // 2 |
|
cropped_big_k = big_k[crop:-crop, crop:-crop] |
|
|
|
return cropped_big_k / cropped_big_k.sum() |
|
|
|
|
|
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6): |
|
""" generate an anisotropic Gaussian kernel |
|
Args: |
|
ksize : e.g., 15, kernel size |
|
theta : [0, pi], rotation angle range |
|
l1 : [0.1,50], scaling of eigenvalues |
|
l2 : [0.1,l1], scaling of eigenvalues |
|
If l1 = l2, will get an isotropic Gaussian kernel. |
|
Returns: |
|
k : kernel |
|
""" |
|
|
|
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.])) |
|
V = np.array([[v[0], v[1]], [v[1], -v[0]]]) |
|
D = np.array([[l1, 0], [0, l2]]) |
|
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V)) |
|
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize) |
|
|
|
return k |
|
|
|
|
|
def gm_blur_kernel(mean, cov, size=15): |
|
center = size / 2.0 + 0.5 |
|
k = np.zeros([size, size]) |
|
for y in range(size): |
|
for x in range(size): |
|
cy = y - center + 1 |
|
cx = x - center + 1 |
|
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov) |
|
|
|
k = k / np.sum(k) |
|
return k |
|
|
|
|
|
def shift_pixel(x, sf, upper_left=True): |
|
"""shift pixel for super-resolution with different scale factors |
|
Args: |
|
x: WxHxC or WxH |
|
sf: scale factor |
|
upper_left: shift direction |
|
""" |
|
h, w = x.shape[:2] |
|
shift = (sf - 1) * 0.5 |
|
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0) |
|
if upper_left: |
|
x1 = xv + shift |
|
y1 = yv + shift |
|
else: |
|
x1 = xv - shift |
|
y1 = yv - shift |
|
|
|
x1 = np.clip(x1, 0, w - 1) |
|
y1 = np.clip(y1, 0, h - 1) |
|
|
|
if x.ndim == 2: |
|
x = interp2d(xv, yv, x)(x1, y1) |
|
if x.ndim == 3: |
|
for i in range(x.shape[-1]): |
|
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1) |
|
|
|
return x |
|
|
|
|
|
def blur(x, k): |
|
''' |
|
x: image, NxcxHxW |
|
k: kernel, Nx1xhxw |
|
''' |
|
n, c = x.shape[:2] |
|
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2 |
|
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate') |
|
k = k.repeat(1, c, 1, 1) |
|
k = k.view(-1, 1, k.shape[2], k.shape[3]) |
|
x = x.view(1, -1, x.shape[2], x.shape[3]) |
|
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c) |
|
x = x.view(n, c, x.shape[2], x.shape[3]) |
|
|
|
return x |
|
|
|
|
|
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0): |
|
"""" |
|
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator |
|
# Kai Zhang |
|
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var |
|
# max_var = 2.5 * sf |
|
""" |
|
|
|
lambda_1 = min_var + np.random.rand() * (max_var - min_var) |
|
lambda_2 = min_var + np.random.rand() * (max_var - min_var) |
|
theta = np.random.rand() * np.pi |
|
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2 |
|
|
|
|
|
LAMBDA = np.diag([lambda_1, lambda_2]) |
|
Q = np.array([[np.cos(theta), -np.sin(theta)], |
|
[np.sin(theta), np.cos(theta)]]) |
|
SIGMA = Q @ LAMBDA @ Q.T |
|
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :] |
|
|
|
|
|
MU = k_size // 2 - 0.5 * (scale_factor - 1) |
|
MU = MU[None, None, :, None] |
|
|
|
|
|
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1])) |
|
Z = np.stack([X, Y], 2)[:, :, :, None] |
|
|
|
|
|
ZZ = Z - MU |
|
ZZ_t = ZZ.transpose(0, 1, 3, 2) |
|
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise) |
|
|
|
|
|
|
|
|
|
|
|
|
|
kernel = raw_kernel / np.sum(raw_kernel) |
|
return kernel |
|
|
|
|
|
def fspecial_gaussian(hsize, sigma): |
|
hsize = [hsize, hsize] |
|
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0] |
|
std = sigma |
|
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1)) |
|
arg = -(x * x + y * y) / (2 * std * std) |
|
h = np.exp(arg) |
|
h[h < scipy.finfo(float).eps * h.max()] = 0 |
|
sumh = h.sum() |
|
if sumh != 0: |
|
h = h / sumh |
|
return h |
|
|
|
|
|
def fspecial_laplacian(alpha): |
|
alpha = max([0, min([alpha, 1])]) |
|
h1 = alpha / (alpha + 1) |
|
h2 = (1 - alpha) / (alpha + 1) |
|
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]] |
|
h = np.array(h) |
|
return h |
|
|
|
|
|
def fspecial(filter_type, *args, **kwargs): |
|
''' |
|
python code from: |
|
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py |
|
''' |
|
if filter_type == 'gaussian': |
|
return fspecial_gaussian(*args, **kwargs) |
|
if filter_type == 'laplacian': |
|
return fspecial_laplacian(*args, **kwargs) |
|
|
|
|
|
""" |
|
# -------------------------------------------- |
|
# degradation models |
|
# -------------------------------------------- |
|
""" |
|
|
|
|
|
def bicubic_degradation(x, sf=3): |
|
''' |
|
Args: |
|
x: HxWxC image, [0, 1] |
|
sf: down-scale factor |
|
Return: |
|
bicubicly downsampled LR image |
|
''' |
|
x = util.imresize_np(x, scale=1 / sf) |
|
return x |
|
|
|
|
|
def srmd_degradation(x, k, sf=3): |
|
''' blur + bicubic downsampling |
|
Args: |
|
x: HxWxC image, [0, 1] |
|
k: hxw, double |
|
sf: down-scale factor |
|
Return: |
|
downsampled LR image |
|
Reference: |
|
@inproceedings{zhang2018learning, |
|
title={Learning a single convolutional super-resolution network for multiple degradations}, |
|
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, |
|
booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, |
|
pages={3262--3271}, |
|
year={2018} |
|
} |
|
''' |
|
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') |
|
x = bicubic_degradation(x, sf=sf) |
|
return x |
|
|
|
|
|
def dpsr_degradation(x, k, sf=3): |
|
''' bicubic downsampling + blur |
|
Args: |
|
x: HxWxC image, [0, 1] |
|
k: hxw, double |
|
sf: down-scale factor |
|
Return: |
|
downsampled LR image |
|
Reference: |
|
@inproceedings{zhang2019deep, |
|
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels}, |
|
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, |
|
booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, |
|
pages={1671--1681}, |
|
year={2019} |
|
} |
|
''' |
|
x = bicubic_degradation(x, sf=sf) |
|
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') |
|
return x |
|
|
|
|
|
def classical_degradation(x, k, sf=3): |
|
''' blur + downsampling |
|
Args: |
|
x: HxWxC image, [0, 1]/[0, 255] |
|
k: hxw, double |
|
sf: down-scale factor |
|
Return: |
|
downsampled LR image |
|
''' |
|
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') |
|
|
|
st = 0 |
|
return x[st::sf, st::sf, ...] |
|
|
|
|
|
def add_sharpening(img, weight=0.5, radius=50, threshold=10): |
|
"""USM sharpening. borrowed from real-ESRGAN |
|
Input image: I; Blurry image: B. |
|
1. K = I + weight * (I - B) |
|
2. Mask = 1 if abs(I - B) > threshold, else: 0 |
|
3. Blur mask: |
|
4. Out = Mask * K + (1 - Mask) * I |
|
Args: |
|
img (Numpy array): Input image, HWC, BGR; float32, [0, 1]. |
|
weight (float): Sharp weight. Default: 1. |
|
radius (float): Kernel size of Gaussian blur. Default: 50. |
|
threshold (int): |
|
""" |
|
if radius % 2 == 0: |
|
radius += 1 |
|
blur = cv2.GaussianBlur(img, (radius, radius), 0) |
|
residual = img - blur |
|
mask = np.abs(residual) * 255 > threshold |
|
mask = mask.astype('float32') |
|
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0) |
|
|
|
K = img + weight * residual |
|
K = np.clip(K, 0, 1) |
|
return soft_mask * K + (1 - soft_mask) * img |
|
|
|
|
|
def add_blur(img, sf=4): |
|
wd2 = 4.0 + sf |
|
wd = 2.0 + 0.2 * sf |
|
|
|
wd2 = wd2/4 |
|
wd = wd/4 |
|
|
|
if random.random() < 0.5: |
|
l1 = wd2 * random.random() |
|
l2 = wd2 * random.random() |
|
k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2) |
|
else: |
|
k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random()) |
|
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror') |
|
|
|
return img |
|
|
|
|
|
def add_resize(img, sf=4): |
|
rnum = np.random.rand() |
|
if rnum > 0.8: |
|
sf1 = random.uniform(1, 2) |
|
elif rnum < 0.7: |
|
sf1 = random.uniform(0.5 / sf, 1) |
|
else: |
|
sf1 = 1.0 |
|
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3])) |
|
img = np.clip(img, 0.0, 1.0) |
|
|
|
return img |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): |
|
noise_level = random.randint(noise_level1, noise_level2) |
|
rnum = np.random.rand() |
|
if rnum > 0.6: |
|
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) |
|
elif rnum < 0.4: |
|
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) |
|
else: |
|
L = noise_level2 / 255. |
|
D = np.diag(np.random.rand(3)) |
|
U = orth(np.random.rand(3, 3)) |
|
conv = np.dot(np.dot(np.transpose(U), D), U) |
|
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) |
|
img = np.clip(img, 0.0, 1.0) |
|
return img |
|
|
|
|
|
def add_speckle_noise(img, noise_level1=2, noise_level2=25): |
|
noise_level = random.randint(noise_level1, noise_level2) |
|
img = np.clip(img, 0.0, 1.0) |
|
rnum = random.random() |
|
if rnum > 0.6: |
|
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) |
|
elif rnum < 0.4: |
|
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) |
|
else: |
|
L = noise_level2 / 255. |
|
D = np.diag(np.random.rand(3)) |
|
U = orth(np.random.rand(3, 3)) |
|
conv = np.dot(np.dot(np.transpose(U), D), U) |
|
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) |
|
img = np.clip(img, 0.0, 1.0) |
|
return img |
|
|
|
|
|
def add_Poisson_noise(img): |
|
img = np.clip((img * 255.0).round(), 0, 255) / 255. |
|
vals = 10 ** (2 * random.random() + 2.0) |
|
if random.random() < 0.5: |
|
img = np.random.poisson(img * vals).astype(np.float32) / vals |
|
else: |
|
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114]) |
|
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255. |
|
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray |
|
img += noise_gray[:, :, np.newaxis] |
|
img = np.clip(img, 0.0, 1.0) |
|
return img |
|
|
|
|
|
def add_JPEG_noise(img): |
|
quality_factor = random.randint(80, 95) |
|
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR) |
|
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]) |
|
img = cv2.imdecode(encimg, 1) |
|
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB) |
|
return img |
|
|
|
|
|
def random_crop(lq, hq, sf=4, lq_patchsize=64): |
|
h, w = lq.shape[:2] |
|
rnd_h = random.randint(0, h - lq_patchsize) |
|
rnd_w = random.randint(0, w - lq_patchsize) |
|
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :] |
|
|
|
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf) |
|
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :] |
|
return lq, hq |
|
|
|
def add_sharpening(img, weight=0.5, radius=50, threshold=10): |
|
"""USM sharpening. borrowed from real-ESRGAN |
|
Input image: I; Blurry image: B. |
|
1. K = I + weight * (I - B) |
|
2. Mask = 1 if abs(I - B) > threshold, else: 0 |
|
3. Blur mask: |
|
4. Out = Mask * K + (1 - Mask) * I |
|
Args: |
|
img (Numpy array): Input image, HWC, BGR; float32, [0, 1]. |
|
weight (float): Sharp weight. Default: 1. |
|
radius (float): Kernel size of Gaussian blur. Default: 50. |
|
threshold (int): |
|
""" |
|
if radius % 2 == 0: |
|
radius += 1 |
|
blur = cv2.GaussianBlur(img, (radius, radius), 0) |
|
residual = img - blur |
|
mask = np.abs(residual) * 255 > threshold |
|
mask = mask.astype('float32') |
|
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0) |
|
|
|
K = img + weight * residual |
|
K = np.clip(K, 0, 1) |
|
return soft_mask * K + (1 - soft_mask) * img |
|
|
|
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None, use_sharp=False): |
|
""" |
|
This is the degradation model of BSRGAN from the paper |
|
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" |
|
---------- |
|
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) |
|
sf: scale factor |
|
isp_model: camera ISP model |
|
Returns |
|
------- |
|
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] |
|
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] |
|
""" |
|
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 |
|
sf_ori = sf |
|
|
|
h1, w1 = img.shape[:2] |
|
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] |
|
h, w = img.shape[:2] |
|
|
|
if h < lq_patchsize * sf or w < lq_patchsize * sf: |
|
raise ValueError(f'img size ({h1}X{w1}) is too small!') |
|
|
|
if use_sharp: |
|
img = add_sharpening(img) |
|
|
|
hq = img.copy() |
|
|
|
if sf == 4 and random.random() < scale2_prob: |
|
if np.random.rand() < 0.5: |
|
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])), |
|
interpolation=random.choice([1, 2, 3])) |
|
else: |
|
img = util.imresize_np(img, 1 / 2, True) |
|
img = np.clip(img, 0.0, 1.0) |
|
sf = 2 |
|
|
|
shuffle_order = random.sample(range(7), 7) |
|
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) |
|
if idx1 > idx2: |
|
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] |
|
|
|
for i in shuffle_order: |
|
|
|
if i == 0: |
|
img = add_blur(img, sf=sf) |
|
|
|
elif i == 1: |
|
img = add_blur(img, sf=sf) |
|
|
|
elif i == 2: |
|
a, b = img.shape[1], img.shape[0] |
|
|
|
if random.random() < 0.75: |
|
sf1 = random.uniform(1, 2 * sf) |
|
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])), |
|
interpolation=random.choice([1, 2, 3])) |
|
else: |
|
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) |
|
k_shifted = shift_pixel(k, sf) |
|
k_shifted = k_shifted / k_shifted.sum() |
|
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror') |
|
img = img[0::sf, 0::sf, ...] |
|
img = np.clip(img, 0.0, 1.0) |
|
|
|
elif i == 3: |
|
|
|
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) |
|
img = np.clip(img, 0.0, 1.0) |
|
|
|
elif i == 4: |
|
|
|
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8) |
|
|
|
elif i == 5: |
|
|
|
if random.random() < jpeg_prob: |
|
img = add_JPEG_noise(img) |
|
|
|
elif i == 6: |
|
|
|
if random.random() < isp_prob and isp_model is not None: |
|
with torch.no_grad(): |
|
img, hq = isp_model.forward(img.copy(), hq) |
|
|
|
|
|
img = add_JPEG_noise(img) |
|
|
|
|
|
img, hq = random_crop(img, hq, sf_ori, lq_patchsize) |
|
|
|
return img, hq |
|
|
|
|
|
|
|
def degradation_bsrgan_variant(image, sf=4, isp_model=None, use_sharp=False): |
|
""" |
|
This is the degradation model of BSRGAN from the paper |
|
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" |
|
---------- |
|
image: high-quality image, [0,1] |
|
sf: scale factor |
|
isp_model: camera ISP model |
|
Returns |
|
------- |
|
ima: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] |
|
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] |
|
""" |
|
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 |
|
sf_ori = sf |
|
|
|
h1, w1 = image.shape[:2] |
|
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] |
|
h, w = image.shape[:2] |
|
|
|
if use_sharp: |
|
image = add_sharpening(image) |
|
|
|
hq = image.copy() |
|
|
|
if sf == 4 and random.random() < scale2_prob: |
|
if np.random.rand() < 0.5: |
|
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])), |
|
interpolation=random.choice([1, 2, 3])) |
|
else: |
|
image = util.imresize_np(image, 1 / 2, True) |
|
image = np.clip(image, 0.0, 1.0) |
|
sf = 2 |
|
|
|
shuffle_order = random.sample(range(7), 7) |
|
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) |
|
if idx1 > idx2: |
|
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] |
|
|
|
for i in shuffle_order: |
|
|
|
if i == 0: |
|
image = add_blur(image, sf=sf) |
|
|
|
|
|
|
|
|
|
if i == 0: |
|
pass |
|
|
|
elif i == 2: |
|
a, b = image.shape[1], image.shape[0] |
|
|
|
if random.random() < 0.8: |
|
sf1 = random.uniform(1, 2 * sf) |
|
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])), |
|
interpolation=random.choice([1, 2, 3])) |
|
else: |
|
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) |
|
k_shifted = shift_pixel(k, sf) |
|
k_shifted = k_shifted / k_shifted.sum() |
|
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror') |
|
image = image[0::sf, 0::sf, ...] |
|
|
|
image = np.clip(image, 0.0, 1.0) |
|
|
|
elif i == 3: |
|
|
|
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) |
|
image = np.clip(image, 0.0, 1.0) |
|
|
|
elif i == 4: |
|
|
|
image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2) |
|
|
|
elif i == 5: |
|
|
|
if random.random() < jpeg_prob: |
|
image = add_JPEG_noise(image) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image = add_JPEG_noise(image) |
|
|
|
return image, hq |
|
|
|
|
|
if __name__ == '__main__': |
|
print("hey") |
|
img = util.imread_uint('utils/test.png', 3) |
|
img = img[:448, :448] |
|
h = img.shape[0] // 4 |
|
print("resizing to", h) |
|
sf = 4 |
|
deg_fn = partial(degradation_bsrgan_variant, sf=sf) |
|
for i in range(20): |
|
print(i) |
|
img_hq = img |
|
img_lq = deg_fn(img)["image"] |
|
img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq) |
|
print(img_lq) |
|
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"] |
|
print(img_lq.shape) |
|
print("bicubic", img_lq_bicubic.shape) |
|
print(img_hq.shape) |
|
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), |
|
interpolation=0) |
|
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), |
|
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), |
|
interpolation=0) |
|
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1) |
|
util.imsave(img_concat, str(i) + '.png') |
|
|