resshift / datapipe /ffhq_degradation_dataset.py
yuhj95's picture
Upload folder using huggingface_hub
4730cdc verified
#!/usr/bin/env python
# -*- coding:utf-8 -*-
'''
This code is borrowed from:
https://github.com/TencentARC/GFPGAN/blob/master/gfpgan/data/ffhq_degradation_dataset.py
'''
import cv2
import math
import numpy as np
import os.path as osp
import torch
import torch.utils.data as data
from basicsr.data import degradations as degradations
from basicsr.data.data_util import paths_from_folder
from basicsr.data.transforms import augment
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
from basicsr.utils.registry import DATASET_REGISTRY
from torchvision.transforms.functional import (
adjust_brightness,
adjust_contrast,
adjust_hue,
adjust_saturation,
normalize
)
from utils import util_common
@DATASET_REGISTRY.register()
class FFHQDegradationDataset(data.Dataset):
"""FFHQ dataset for GFPGAN.
It reads high resolution images, and then generate low-quality (LQ) images on-the-fly.
Args:
opt (dict): Config for train datasets. It contains the following keys:
dataroot_gt (str): Data root path for gt.
io_backend (dict): IO backend type and other kwarg.
mean (list | tuple): Image mean.
std (list | tuple): Image std.
use_hflip (bool): Whether to horizontally flip.
Please see more options in the codes.
"""
def __init__(self, opt):
super(FFHQDegradationDataset, self).__init__()
self.opt = opt
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.need_gt_path = opt['need_gt_path']
self.mean = opt['mean']
self.std = opt['std']
self.out_size = opt['out_size']
self.crop_components = opt.get('crop_components', False) # facial components
self.eye_enlarge_ratio = opt.get('eye_enlarge_ratio', 1) # whether enlarge eye regions
if self.crop_components:
# load component list from a pre-process pth files
self.components_list = torch.load(opt.get('component_path'))
# file client
self.paths = util_common.scan_files_from_folder(opt['dir_path'], opt['im_exts'], True)
# degradation configurations
self.blur_kernel_size = opt['blur_kernel_size']
self.kernel_list = opt['kernel_list']
self.kernel_prob = opt['kernel_prob']
self.blur_sigma = opt['blur_sigma']
self.downsample_range = opt['downsample_range']
self.noise_range = opt['noise_range']
self.jpeg_range = opt['jpeg_range']
# color jitter
self.color_jitter_prob = opt.get('color_jitter_prob')
self.color_jitter_pt_prob = opt.get('color_jitter_pt_prob')
self.color_jitter_shift = opt.get('color_jitter_shift', 20)
# to gray
self.gray_prob = opt.get('gray_prob')
self.color_jitter_shift /= 255.
@staticmethod
def color_jitter(img, shift):
"""jitter color: randomly jitter the RGB values, in numpy formats"""
jitter_val = np.random.uniform(-shift, shift, 3).astype(np.float32)
img = img + jitter_val
img = np.clip(img, 0, 1)
return img
@staticmethod
def color_jitter_pt(img, brightness, contrast, saturation, hue):
"""jitter color: randomly jitter the brightness, contrast, saturation, and hue, in torch Tensor formats"""
fn_idx = torch.randperm(4)
for fn_id in fn_idx:
if fn_id == 0 and brightness is not None:
brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
img = adjust_brightness(img, brightness_factor)
if fn_id == 1 and contrast is not None:
contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
img = adjust_contrast(img, contrast_factor)
if fn_id == 2 and saturation is not None:
saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
img = adjust_saturation(img, saturation_factor)
if fn_id == 3 and hue is not None:
hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
img = adjust_hue(img, hue_factor)
return img
def get_component_coordinates(self, index, status):
"""Get facial component (left_eye, right_eye, mouth) coordinates from a pre-loaded pth file"""
components_bbox = self.components_list[f'{index:08d}']
if status[0]: # hflip
# exchange right and left eye
tmp = components_bbox['left_eye']
components_bbox['left_eye'] = components_bbox['right_eye']
components_bbox['right_eye'] = tmp
# modify the width coordinate
components_bbox['left_eye'][0] = self.out_size - components_bbox['left_eye'][0]
components_bbox['right_eye'][0] = self.out_size - components_bbox['right_eye'][0]
components_bbox['mouth'][0] = self.out_size - components_bbox['mouth'][0]
# get coordinates
locations = []
for part in ['left_eye', 'right_eye', 'mouth']:
mean = components_bbox[part][0:2]
half_len = components_bbox[part][2]
if 'eye' in part:
half_len *= self.eye_enlarge_ratio
loc = np.hstack((mean - half_len + 1, mean + half_len))
loc = torch.from_numpy(loc).float()
locations.append(loc)
return locations
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
# load gt image
# Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32.
gt_path = self.paths[index]
img_bytes = self.file_client.get(gt_path)
img_gt = imfrombytes(img_bytes, float32=True) # [0, 1]
# random horizontal flip
img_gt, status = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False, return_status=True)
h, w, _ = img_gt.shape
# get facial component coordinates
if self.crop_components:
locations = self.get_component_coordinates(index, status)
loc_left_eye, loc_right_eye, loc_mouth = locations
# ------------------------ generate lq image ------------------------ #
# blur
kernel = degradations.random_mixed_kernels(
self.kernel_list,
self.kernel_prob,
self.blur_kernel_size,
self.blur_sigma,
self.blur_sigma, [-math.pi, math.pi],
noise_range=None)
img_lq = cv2.filter2D(img_gt, -1, kernel)
# downsample
scale = np.random.uniform(self.downsample_range[0], self.downsample_range[1])
img_lq = cv2.resize(img_lq, (int(w // scale), int(h // scale)), interpolation=cv2.INTER_LINEAR)
# noise
if self.noise_range is not None:
img_lq = degradations.random_add_gaussian_noise(img_lq, self.noise_range)
# jpeg compression
if self.jpeg_range is not None:
img_lq = degradations.random_add_jpg_compression(img_lq, self.jpeg_range)
# resize to original size
img_lq = cv2.resize(img_lq, (w, h), interpolation=cv2.INTER_LINEAR)
# random color jitter (only for lq)
if self.color_jitter_prob is not None and (np.random.uniform() < self.color_jitter_prob):
img_lq = self.color_jitter(img_lq, self.color_jitter_shift)
# random to gray (only for lq)
if self.gray_prob and np.random.uniform() < self.gray_prob:
img_lq = cv2.cvtColor(img_lq, cv2.COLOR_BGR2GRAY)
img_lq = np.tile(img_lq[:, :, None], [1, 1, 3])
if self.opt.get('gt_gray'): # whether convert GT to gray images
img_gt = cv2.cvtColor(img_gt, cv2.COLOR_BGR2GRAY)
img_gt = np.tile(img_gt[:, :, None], [1, 1, 3]) # repeat the color channels
# BGR to RGB, HWC to CHW, numpy to tensor
img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True)
# random color jitter (pytorch version) (only for lq)
if self.color_jitter_pt_prob is not None and (np.random.uniform() < self.color_jitter_pt_prob):
brightness = self.opt.get('brightness', (0.5, 1.5))
contrast = self.opt.get('contrast', (0.5, 1.5))
saturation = self.opt.get('saturation', (0, 1.5))
hue = self.opt.get('hue', (-0.1, 0.1))
img_lq = self.color_jitter_pt(img_lq, brightness, contrast, saturation, hue)
# round and clip
img_lq = torch.clamp((img_lq * 255.0).round(), 0, 255) / 255.
# normalize
normalize(img_gt, self.mean, self.std, inplace=True)
normalize(img_lq, self.mean, self.std, inplace=True)
out_dict = {'lq': img_lq, 'gt': img_gt }
if self.need_gt_path:
out_dict['gt_path'] = gt_path
if self.crop_components:
out_dict['loc_left_eye'] = loc_left_eye
out_dict['loc_right_eye'] = loc_right_eye
out_dict['loc_mouth'] = loc_mouth
return out_dict
def __len__(self):
return len(self.paths)