|
import enum |
|
import math |
|
|
|
import torch |
|
import numpy as np |
|
import torch as th |
|
import torch.nn.functional as F |
|
|
|
from .basic_ops import mean_flat |
|
from .losses import normal_kl, discretized_gaussian_log_likelihood |
|
|
|
from ldm.models.autoencoder import AutoencoderKLTorch |
|
|
|
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps, beta_start, beta_end): |
|
""" |
|
Get a pre-defined beta schedule for the given name. |
|
|
|
The beta schedule library consists of beta schedules which remain similar |
|
in the limit of num_diffusion_timesteps. |
|
Beta schedules may be added, but should not be removed or changed once |
|
they are committed to maintain backwards compatibility. |
|
""" |
|
if schedule_name == "linear": |
|
|
|
|
|
return np.linspace( |
|
beta_start**0.5, beta_end**0.5, num_diffusion_timesteps, dtype=np.float64 |
|
)**2 |
|
else: |
|
raise NotImplementedError(f"unknown beta schedule: {schedule_name}") |
|
|
|
def get_named_eta_schedule( |
|
schedule_name, |
|
num_diffusion_timesteps, |
|
min_noise_level, |
|
etas_end=0.99, |
|
kappa=1.0, |
|
kwargs=None): |
|
""" |
|
Get a pre-defined eta schedule for the given name. |
|
|
|
The eta schedule library consists of eta schedules which remain similar |
|
in the limit of num_diffusion_timesteps. |
|
""" |
|
if schedule_name == 'exponential': |
|
|
|
|
|
|
|
|
|
|
|
power = kwargs.get('power', None) |
|
|
|
etas_start = min(min_noise_level / kappa, min_noise_level) |
|
increaser = math.exp(1/(num_diffusion_timesteps-1)*math.log(etas_end/etas_start)) |
|
base = np.ones([num_diffusion_timesteps, ]) * increaser |
|
power_timestep = np.linspace(0, 1, num_diffusion_timesteps, endpoint=True)**power |
|
power_timestep *= (num_diffusion_timesteps-1) |
|
sqrt_etas = np.power(base, power_timestep) * etas_start |
|
elif schedule_name == 'ldm': |
|
import scipy.io as sio |
|
mat_path = kwargs.get('mat_path', None) |
|
sqrt_etas = sio.loadmat(mat_path)['sqrt_etas'].reshape(-1) |
|
else: |
|
raise ValueError(f"Unknow schedule_name {schedule_name}") |
|
|
|
return sqrt_etas |
|
|
|
class ModelMeanType(enum.Enum): |
|
""" |
|
Which type of output the model predicts. |
|
""" |
|
START_X = enum.auto() |
|
EPSILON = enum.auto() |
|
PREVIOUS_X = enum.auto() |
|
RESIDUAL = enum.auto() |
|
EPSILON_SCALE = enum.auto() |
|
|
|
class LossType(enum.Enum): |
|
MSE = enum.auto() |
|
WEIGHTED_MSE = enum.auto() |
|
|
|
class ModelVarTypeDDPM(enum.Enum): |
|
""" |
|
What is used as the model's output variance. |
|
""" |
|
|
|
LEARNED = enum.auto() |
|
LEARNED_RANGE = enum.auto() |
|
FIXED_LARGE = enum.auto() |
|
FIXED_SMALL = enum.auto() |
|
|
|
def _extract_into_tensor(arr, timesteps, broadcast_shape): |
|
""" |
|
Extract values from a 1-D numpy array for a batch of indices. |
|
|
|
:param arr: the 1-D numpy array. |
|
:param timesteps: a tensor of indices into the array to extract. |
|
:param broadcast_shape: a larger shape of K dimensions with the batch |
|
dimension equal to the length of timesteps. |
|
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. |
|
""" |
|
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() |
|
while len(res.shape) < len(broadcast_shape): |
|
res = res[..., None] |
|
return res.expand(broadcast_shape) |
|
|
|
class GaussianDiffusion: |
|
""" |
|
Utilities for training and sampling diffusion models. |
|
|
|
:param sqrt_etas: a 1-D numpy array of etas for each diffusion timestep, |
|
starting at T and going to 1. |
|
:param kappa: a scaler controling the variance of the diffusion kernel |
|
:param model_mean_type: a ModelMeanType determining what the model outputs. |
|
:param loss_type: a LossType determining the loss function to use. |
|
model so that they are always scaled like in the |
|
original paper (0 to 1000). |
|
:param scale_factor: a scaler to scale the latent code |
|
:param sf: super resolution factor |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
sqrt_etas, |
|
kappa, |
|
model_mean_type, |
|
loss_type, |
|
sf=4, |
|
scale_factor=None, |
|
normalize_input=True, |
|
latent_flag=True, |
|
): |
|
self.kappa = kappa |
|
self.model_mean_type = model_mean_type |
|
self.loss_type = loss_type |
|
self.scale_factor = scale_factor |
|
self.normalize_input = normalize_input |
|
self.latent_flag = latent_flag |
|
self.sf = sf |
|
|
|
|
|
self.sqrt_etas = sqrt_etas |
|
self.etas = sqrt_etas**2 |
|
assert len(self.etas.shape) == 1, "etas must be 1-D" |
|
assert (self.etas > 0).all() and (self.etas <= 1).all() |
|
|
|
self.num_timesteps = int(self.etas.shape[0]) |
|
self.etas_prev = np.append(0.0, self.etas[:-1]) |
|
self.alpha = self.etas - self.etas_prev |
|
|
|
|
|
self.posterior_variance = kappa**2 * self.etas_prev / self.etas * self.alpha |
|
self.posterior_variance_clipped = np.append( |
|
self.posterior_variance[1], self.posterior_variance[1:] |
|
) |
|
|
|
|
|
self.posterior_log_variance_clipped = np.log(self.posterior_variance_clipped) |
|
self.posterior_mean_coef1 = self.etas_prev / self.etas |
|
self.posterior_mean_coef2 = self.alpha / self.etas |
|
|
|
|
|
if model_mean_type in [ModelMeanType.START_X, ModelMeanType.RESIDUAL]: |
|
weight_loss_mse = 0.5 / self.posterior_variance_clipped * (self.alpha / self.etas)**2 |
|
elif model_mean_type in [ModelMeanType.EPSILON, ModelMeanType.EPSILON_SCALE] : |
|
weight_loss_mse = 0.5 / self.posterior_variance_clipped * ( |
|
kappa * self.alpha / ((1-self.etas) * self.sqrt_etas) |
|
)**2 |
|
else: |
|
raise NotImplementedError(model_mean_type) |
|
|
|
|
|
self.weight_loss_mse = weight_loss_mse |
|
|
|
def q_mean_variance(self, x_start, y, t): |
|
""" |
|
Get the distribution q(x_t | x_0). |
|
|
|
:param x_start: the [N x C x ...] tensor of noiseless inputs. |
|
:param y: the [N x C x ...] tensor of degraded inputs. |
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. |
|
:return: A tuple (mean, variance, log_variance), all of x_start's shape. |
|
""" |
|
mean = _extract_into_tensor(self.etas, t, x_start.shape) * (y - x_start) + x_start |
|
variance = _extract_into_tensor(self.etas, t, x_start.shape) * self.kappa**2 |
|
log_variance = variance.log() |
|
return mean, variance, log_variance |
|
|
|
def q_sample(self, x_start, y, t, noise=None): |
|
""" |
|
Diffuse the data for a given number of diffusion steps. |
|
|
|
In other words, sample from q(x_t | x_0). |
|
|
|
:param x_start: the initial data batch. |
|
:param y: the [N x C x ...] tensor of degraded inputs. |
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. |
|
:param noise: if specified, the split-out normal noise. |
|
:return: A noisy version of x_start. |
|
""" |
|
if noise is None: |
|
noise = th.randn_like(x_start) |
|
assert noise.shape == x_start.shape |
|
return ( |
|
_extract_into_tensor(self.etas, t, x_start.shape) * (y - x_start) + x_start |
|
+ _extract_into_tensor(self.sqrt_etas * self.kappa, t, x_start.shape) * noise |
|
) |
|
|
|
def q_posterior_mean_variance(self, x_start, x_t, t): |
|
""" |
|
Compute the mean and variance of the diffusion posterior: |
|
|
|
q(x_{t-1} | x_t, x_0) |
|
|
|
""" |
|
assert x_start.shape == x_t.shape |
|
posterior_mean = ( |
|
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_t |
|
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_start |
|
) |
|
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) |
|
posterior_log_variance_clipped = _extract_into_tensor( |
|
self.posterior_log_variance_clipped, t, x_t.shape |
|
) |
|
assert ( |
|
posterior_mean.shape[0] |
|
== posterior_variance.shape[0] |
|
== posterior_log_variance_clipped.shape[0] |
|
== x_start.shape[0] |
|
) |
|
return posterior_mean, posterior_variance, posterior_log_variance_clipped |
|
|
|
def p_mean_variance( |
|
self, model, x_t, y, t, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
model_kwargs=None |
|
): |
|
""" |
|
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of |
|
the initial x, x_0. |
|
|
|
:param model: the model, which takes a signal and a batch of timesteps |
|
as input. |
|
:param x_t: the [N x C x ...] tensor at time t. |
|
:param y: the [N x C x ...] tensor of degraded inputs. |
|
:param t: a 1-D Tensor of timesteps. |
|
:param clip_denoised: if True, clip the denoised signal into [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. Applies before |
|
clip_denoised. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:return: a dict with the following keys: |
|
- 'mean': the model mean output. |
|
- 'variance': the model variance output. |
|
- 'log_variance': the log of 'variance'. |
|
- 'pred_xstart': the prediction for x_0. |
|
""" |
|
if model_kwargs is None: |
|
model_kwargs = {} |
|
|
|
B, C = x_t.shape[:2] |
|
assert t.shape == (B,) |
|
model_output = model(self._scale_input(x_t, t), t, **model_kwargs) |
|
|
|
model_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) |
|
model_log_variance = _extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) |
|
|
|
def process_xstart(x): |
|
if denoised_fn is not None: |
|
x = denoised_fn(x) |
|
if clip_denoised: |
|
return x.clamp(-1, 1) |
|
return x |
|
|
|
if self.model_mean_type == ModelMeanType.START_X: |
|
pred_xstart = process_xstart(model_output) |
|
elif self.model_mean_type == ModelMeanType.RESIDUAL: |
|
pred_xstart = process_xstart( |
|
self._predict_xstart_from_residual(y=y, residual=model_output) |
|
) |
|
elif self.model_mean_type == ModelMeanType.EPSILON: |
|
pred_xstart = process_xstart( |
|
self._predict_xstart_from_eps(x_t=x_t, y=y, t=t, eps=model_output) |
|
) |
|
elif self.model_mean_type == ModelMeanType.EPSILON_SCALE: |
|
pred_xstart = process_xstart( |
|
self._predict_xstart_from_eps_scale(x_t=x_t, y=y, t=t, eps=model_output) |
|
) |
|
else: |
|
raise ValueError(f'Unknown Mean type: {self.model_mean_type}') |
|
|
|
model_mean, _, _ = self.q_posterior_mean_variance( |
|
x_start=pred_xstart, x_t=x_t, t=t |
|
) |
|
|
|
assert ( |
|
model_mean.shape == model_log_variance.shape == pred_xstart.shape == x_t.shape |
|
) |
|
return { |
|
"mean": model_mean, |
|
"variance": model_variance, |
|
"log_variance": model_log_variance, |
|
"pred_xstart": pred_xstart, |
|
} |
|
|
|
def _predict_xstart_from_eps(self, x_t, y, t, eps): |
|
assert x_t.shape == eps.shape |
|
return ( |
|
x_t - _extract_into_tensor(self.sqrt_etas, t, x_t.shape) * self.kappa * eps |
|
- _extract_into_tensor(self.etas, t, x_t.shape) * y |
|
) / _extract_into_tensor(1 - self.etas, t, x_t.shape) |
|
|
|
def _predict_xstart_from_eps_scale(self, x_t, y, t, eps): |
|
assert x_t.shape == eps.shape |
|
return ( |
|
x_t - eps - _extract_into_tensor(self.etas, t, x_t.shape) * y |
|
) / _extract_into_tensor(1 - self.etas, t, x_t.shape) |
|
|
|
def _predict_xstart_from_residual(self, y, residual): |
|
assert y.shape == residual.shape |
|
return (y - residual) |
|
|
|
def _predict_eps_from_xstart(self, x_t, y, t, pred_xstart): |
|
return ( |
|
x_t - _extract_into_tensor(1 - self.etas, t, x_t.shape) * pred_xstart |
|
- _extract_into_tensor(self.etas, t, x_t.shape) * y |
|
) / _extract_into_tensor(self.kappa * self.sqrt_etas, t, x_t.shape) |
|
|
|
def p_sample(self, model, x, y, t, clip_denoised=True, denoised_fn=None, model_kwargs=None, noise_repeat=False): |
|
""" |
|
Sample x_{t-1} from the model at the given timestep. |
|
|
|
:param model: the model to sample from. |
|
:param x: the current tensor at x_t. |
|
:param y: the [N x C x ...] tensor of degraded inputs. |
|
:param t: the value of t, starting at 0 for the first diffusion step. |
|
:param clip_denoised: if True, clip the x_start prediction to [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:return: a dict containing the following keys: |
|
- 'sample': a random sample from the model. |
|
- 'pred_xstart': a prediction of x_0. |
|
""" |
|
out = self.p_mean_variance( |
|
model, |
|
x, |
|
y, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
noise = th.randn_like(x) |
|
if noise_repeat: |
|
noise = noise[0,].repeat(x.shape[0], 1, 1, 1) |
|
nonzero_mask = ( |
|
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) |
|
) |
|
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise |
|
return {"sample": sample, "pred_xstart": out["pred_xstart"], "mean":out["mean"]} |
|
|
|
def p_sample_loop( |
|
self, |
|
y, |
|
model, |
|
first_stage_model=None, |
|
consistencydecoder=None, |
|
noise=None, |
|
noise_repeat=False, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
): |
|
""" |
|
Generate samples from the model. |
|
|
|
:param y: the [N x C x ...] tensor of degraded inputs. |
|
:param model: the model module. |
|
:param first_stage_model: the autoencoder model |
|
:param noise: if specified, the noise from the encoder to sample. |
|
Should be of the same shape as `shape`. |
|
:param clip_denoised: if True, clip x_start predictions to [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:param device: if specified, the device to create the samples on. |
|
If not specified, use a model parameter's device. |
|
:param progress: if True, show a tqdm progress bar. |
|
:return: a non-differentiable batch of samples. |
|
""" |
|
final = None |
|
for sample in self.p_sample_loop_progressive( |
|
y, |
|
model, |
|
first_stage_model=first_stage_model, |
|
noise=noise, |
|
noise_repeat=noise_repeat, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
device=device, |
|
progress=progress, |
|
): |
|
final = sample["sample"] |
|
with th.no_grad(): |
|
out = self.decode_first_stage( |
|
final, |
|
first_stage_model=first_stage_model, |
|
consistencydecoder=consistencydecoder, |
|
) |
|
return out |
|
|
|
def p_sample_loop_progressive( |
|
self, y, model, |
|
first_stage_model=None, |
|
noise=None, |
|
noise_repeat=False, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
): |
|
""" |
|
Generate samples from the model and yield intermediate samples from |
|
each timestep of diffusion. |
|
|
|
Arguments are the same as p_sample_loop(). |
|
Returns a generator over dicts, where each dict is the return value of |
|
p_sample(). |
|
""" |
|
if device is None: |
|
device = next(model.parameters()).device |
|
z_y = self.encode_first_stage(y, first_stage_model, up_sample=True) |
|
|
|
|
|
if noise is None: |
|
noise = th.randn_like(z_y) |
|
if noise_repeat: |
|
noise = noise[0,].repeat(z_y.shape[0], 1, 1, 1) |
|
z_sample = self.prior_sample(z_y, noise) |
|
|
|
indices = list(range(self.num_timesteps))[::-1] |
|
if progress: |
|
|
|
from tqdm.auto import tqdm |
|
|
|
indices = tqdm(indices) |
|
|
|
for i in indices: |
|
t = th.tensor([i] * y.shape[0], device=device) |
|
with th.no_grad(): |
|
out = self.p_sample( |
|
model, |
|
z_sample, |
|
z_y, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
noise_repeat=noise_repeat, |
|
) |
|
yield out |
|
z_sample = out["sample"] |
|
|
|
def decode_first_stage(self, z_sample, first_stage_model=None, consistencydecoder=None): |
|
batch_size = z_sample.shape[0] |
|
data_dtype = z_sample.dtype |
|
|
|
if consistencydecoder is None: |
|
model = first_stage_model |
|
decoder = first_stage_model.decode |
|
model_dtype = next(model.parameters()).dtype |
|
else: |
|
model = consistencydecoder |
|
decoder = consistencydecoder |
|
model_dtype = next(model.ckpt.parameters()).dtype |
|
|
|
if first_stage_model is None: |
|
return z_sample |
|
else: |
|
z_sample = 1 / self.scale_factor * z_sample |
|
if consistencydecoder is None: |
|
out = decoder(z_sample.type(model_dtype)) |
|
else: |
|
with th.cuda.amp.autocast(): |
|
out = decoder(z_sample) |
|
if not model_dtype == data_dtype: |
|
out = out.type(data_dtype) |
|
return out |
|
|
|
def encode_first_stage(self, y, first_stage_model, up_sample=False): |
|
data_dtype = y.dtype |
|
model_dtype = next(first_stage_model.parameters()).dtype |
|
if up_sample and self.sf != 1: |
|
y = F.interpolate(y, scale_factor=self.sf, mode='bicubic') |
|
if first_stage_model is None: |
|
return y |
|
else: |
|
if not model_dtype == data_dtype: |
|
y = y.type(model_dtype) |
|
with th.no_grad(): |
|
z_y = first_stage_model.encode(y) |
|
out = z_y * self.scale_factor |
|
if not model_dtype == data_dtype: |
|
out = out.type(data_dtype) |
|
return out |
|
|
|
def prior_sample(self, y, noise=None): |
|
""" |
|
Generate samples from the prior distribution, i.e., q(x_T|x_0) ~= N(x_T|y, ~) |
|
|
|
:param y: the [N x C x ...] tensor of degraded inputs. |
|
:param noise: the [N x C x ...] tensor of degraded inputs. |
|
""" |
|
if noise is None: |
|
noise = th.randn_like(y) |
|
|
|
t = th.tensor([self.num_timesteps-1,] * y.shape[0], device=y.device).long() |
|
|
|
return y + _extract_into_tensor(self.kappa * self.sqrt_etas, t, y.shape) * noise |
|
|
|
def training_losses( |
|
self, model, x_start, y, t, |
|
first_stage_model=None, |
|
model_kwargs=None, |
|
noise=None, |
|
): |
|
""" |
|
Compute training losses for a single timestep. |
|
|
|
:param model: the model to evaluate loss on. |
|
:param first_stage_model: autoencoder model |
|
:param x_start: the [N x C x ...] tensor of inputs. |
|
:param y: the [N x C x ...] tensor of degraded inputs. |
|
:param t: a batch of timestep indices. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:param noise: if specified, the specific Gaussian noise to try to remove. |
|
:param up_sample_lq: Upsampling low-quality image before encoding |
|
:return: a dict with the key "loss" containing a tensor of shape [N]. |
|
Some mean or variance settings may also have other keys. |
|
""" |
|
if model_kwargs is None: |
|
model_kwargs = {} |
|
|
|
z_y = self.encode_first_stage(y, first_stage_model, up_sample=True) |
|
z_start = self.encode_first_stage(x_start, first_stage_model, up_sample=False) |
|
|
|
if noise is None: |
|
noise = th.randn_like(z_start) |
|
|
|
z_t = self.q_sample(z_start, z_y, t, noise=noise) |
|
|
|
terms = {} |
|
|
|
if self.loss_type == LossType.MSE or self.loss_type == LossType.WEIGHTED_MSE: |
|
model_output = model(self._scale_input(z_t, t), t, **model_kwargs) |
|
target = { |
|
ModelMeanType.START_X: z_start, |
|
ModelMeanType.RESIDUAL: z_y - z_start, |
|
ModelMeanType.EPSILON: noise, |
|
ModelMeanType.EPSILON_SCALE: noise*self.kappa*_extract_into_tensor(self.sqrt_etas, t, noise.shape), |
|
}[self.model_mean_type] |
|
assert model_output.shape == target.shape == z_start.shape |
|
terms["mse"] = mean_flat((target - model_output) ** 2) |
|
if self.model_mean_type == ModelMeanType.EPSILON_SCALE: |
|
terms["mse"] /= (self.kappa**2 * _extract_into_tensor(self.etas, t, t.shape)) |
|
if self.loss_type == LossType.WEIGHTED_MSE: |
|
weights = _extract_into_tensor(self.weight_loss_mse, t, t.shape) |
|
else: |
|
weights = 1 |
|
terms["mse"] *= weights |
|
else: |
|
raise NotImplementedError(self.loss_type) |
|
|
|
if self.model_mean_type == ModelMeanType.START_X: |
|
pred_zstart = model_output |
|
elif self.model_mean_type == ModelMeanType.EPSILON: |
|
pred_zstart = self._predict_xstart_from_eps(x_t=z_t, y=z_y, t=t, eps=model_output) |
|
elif self.model_mean_type == ModelMeanType.RESIDUAL: |
|
pred_zstart = self._predict_xstart_from_residual(y=z_y, residual=model_output) |
|
elif self.model_mean_type == ModelMeanType.EPSILON_SCALE: |
|
pred_zstart = self._predict_xstart_from_eps_scale(x_t=z_t, y=z_y, t=t, eps=model_output) |
|
else: |
|
raise NotImplementedError(self.model_mean_type) |
|
|
|
return terms, z_t, pred_zstart |
|
|
|
def _scale_input(self, inputs, t): |
|
if self.normalize_input: |
|
if self.latent_flag: |
|
|
|
std = th.sqrt(_extract_into_tensor(self.etas, t, inputs.shape) * self.kappa**2 + 1) |
|
inputs_norm = inputs / std |
|
else: |
|
inputs_max = _extract_into_tensor(self.sqrt_etas, t, inputs.shape) * self.kappa * 3 + 1 |
|
inputs_norm = inputs / inputs_max |
|
else: |
|
inputs_norm = inputs |
|
return inputs_norm |
|
|
|
class GaussianDiffusionDDPM: |
|
""" |
|
Utilities for training and sampling diffusion models. |
|
|
|
Ported directly from here, and then adapted over time to further experimentation. |
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 |
|
|
|
:param betas: a 1-D numpy array of betas for each diffusion timestep, |
|
starting at T and going to 1. |
|
:param model_mean_type: a ModelMeanType determining what the model outputs. |
|
:param model_var_type: a ModelVarTypeDDPM determining how variance is output. |
|
:param loss_type: a LossType determining the loss function to use. |
|
:param rescale_timesteps: if True, pass floating point timesteps into the |
|
model so that they are always scaled like in the |
|
original paper (0 to 1000). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
betas, |
|
model_mean_type, |
|
model_var_type, |
|
scale_factor=None, |
|
sf=4, |
|
): |
|
self.model_mean_type = model_mean_type |
|
self.model_var_type = model_var_type |
|
self.scale_factor = scale_factor |
|
self.sf=sf |
|
|
|
|
|
betas = np.array(betas, dtype=np.float64) |
|
self.betas = betas |
|
assert len(betas.shape) == 1, "betas must be 1-D" |
|
assert (betas > 0).all() and (betas <= 1).all() |
|
|
|
self.num_timesteps = int(betas.shape[0]) |
|
|
|
alphas = 1.0 - betas |
|
self.alphas_cumprod = np.cumprod(alphas, axis=0) |
|
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) |
|
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) |
|
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) |
|
|
|
|
|
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) |
|
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) |
|
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) |
|
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) |
|
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) |
|
|
|
|
|
self.posterior_variance = ( |
|
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) |
|
) |
|
|
|
|
|
self.posterior_log_variance_clipped = np.log( |
|
np.append(self.posterior_variance[1], self.posterior_variance[1:]) |
|
) |
|
self.posterior_mean_coef1 = ( |
|
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) |
|
) |
|
self.posterior_mean_coef2 = ( |
|
(1.0 - self.alphas_cumprod_prev) |
|
* np.sqrt(alphas) |
|
/ (1.0 - self.alphas_cumprod) |
|
) |
|
|
|
def q_mean_variance(self, x_start, t): |
|
""" |
|
Get the distribution q(x_t | x_0). |
|
|
|
:param x_start: the [N x C x ...] tensor of noiseless inputs. |
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. |
|
:return: A tuple (mean, variance, log_variance), all of x_start's shape. |
|
""" |
|
mean = ( |
|
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start |
|
) |
|
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) |
|
log_variance = _extract_into_tensor( |
|
self.log_one_minus_alphas_cumprod, t, x_start.shape |
|
) |
|
return mean, variance, log_variance |
|
|
|
def q_sample(self, x_start, t, noise=None): |
|
""" |
|
Diffuse the data for a given number of diffusion steps. |
|
|
|
In other words, sample from q(x_t | x_0). |
|
|
|
:param x_start: the initial data batch. |
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. |
|
:param noise: if specified, the split-out normal noise. |
|
:return: A noisy version of x_start. |
|
""" |
|
if noise is None: |
|
noise = th.randn_like(x_start) |
|
assert noise.shape == x_start.shape |
|
return ( |
|
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start |
|
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) |
|
* noise |
|
) |
|
|
|
def q_posterior_mean_variance(self, x_start, x_t, t): |
|
""" |
|
Compute the mean and variance of the diffusion posterior: |
|
|
|
q(x_{t-1} | x_t, x_0) |
|
|
|
""" |
|
assert x_start.shape == x_t.shape |
|
posterior_mean = ( |
|
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start |
|
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t |
|
) |
|
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) |
|
posterior_log_variance_clipped = _extract_into_tensor( |
|
self.posterior_log_variance_clipped, t, x_t.shape |
|
) |
|
assert ( |
|
posterior_mean.shape[0] |
|
== posterior_variance.shape[0] |
|
== posterior_log_variance_clipped.shape[0] |
|
== x_start.shape[0] |
|
) |
|
return posterior_mean, posterior_variance, posterior_log_variance_clipped |
|
|
|
def p_mean_variance( |
|
self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None |
|
): |
|
""" |
|
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of |
|
the initial x, x_0. |
|
|
|
:param model: the model, which takes a signal and a batch of timesteps |
|
as input. |
|
:param x: the [N x C x ...] tensor at time t. |
|
:param t: a 1-D Tensor of timesteps. |
|
:param clip_denoised: if True, clip the denoised signal into [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. Applies before |
|
clip_denoised. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:return: a dict with the following keys: |
|
- 'mean': the model mean output. |
|
- 'variance': the model variance output. |
|
- 'log_variance': the log of 'variance'. |
|
- 'pred_xstart': the prediction for x_0. |
|
""" |
|
if model_kwargs is None: |
|
model_kwargs = {} |
|
|
|
B, C = x.shape[:2] |
|
assert t.shape == (B,) |
|
model_output = model(x, t, **model_kwargs) |
|
|
|
if self.model_var_type in [ModelVarTypeDDPM.LEARNED, ModelVarTypeDDPM.LEARNED_RANGE]: |
|
assert model_output.shape == (B, C * 2, *x.shape[2:]) |
|
model_output, model_var_values = th.split(model_output, C, dim=1) |
|
if self.model_var_type == ModelVarTypeDDPM.LEARNED: |
|
model_log_variance = model_var_values |
|
model_variance = th.exp(model_log_variance) |
|
else: |
|
min_log = _extract_into_tensor( |
|
self.posterior_log_variance_clipped, t, x.shape |
|
) |
|
max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) |
|
|
|
frac = (model_var_values + 1) / 2 |
|
model_log_variance = frac * max_log + (1 - frac) * min_log |
|
model_variance = th.exp(model_log_variance) |
|
else: |
|
model_variance, model_log_variance = { |
|
|
|
|
|
ModelVarTypeDDPM.FIXED_LARGE: ( |
|
np.append(self.posterior_variance[1], self.betas[1:]), |
|
np.log(np.append(self.posterior_variance[1], self.betas[1:])), |
|
), |
|
ModelVarTypeDDPM.FIXED_SMALL: ( |
|
self.posterior_variance, |
|
self.posterior_log_variance_clipped, |
|
), |
|
}[self.model_var_type] |
|
model_variance = _extract_into_tensor(model_variance, t, x.shape) |
|
model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape) |
|
|
|
def process_xstart(x): |
|
if denoised_fn is not None: |
|
x = denoised_fn(x) |
|
if clip_denoised: |
|
return x.clamp(-1, 1) |
|
return x |
|
|
|
if self.model_mean_type == ModelMeanType.PREVIOUS_X: |
|
pred_xstart = process_xstart( |
|
self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output) |
|
) |
|
model_mean = model_output |
|
elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]: |
|
if self.model_mean_type == ModelMeanType.START_X: |
|
pred_xstart = process_xstart(model_output) |
|
else: |
|
pred_xstart = process_xstart( |
|
self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output) |
|
) |
|
model_mean, _, _ = self.q_posterior_mean_variance( |
|
x_start=pred_xstart, x_t=x, t=t |
|
) |
|
else: |
|
raise NotImplementedError(self.model_mean_type) |
|
|
|
assert ( |
|
model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape |
|
) |
|
return { |
|
"mean": model_mean, |
|
"variance": model_variance, |
|
"log_variance": model_log_variance, |
|
"pred_xstart": pred_xstart, |
|
} |
|
|
|
def _predict_xstart_from_eps(self, x_t, t, eps): |
|
assert x_t.shape == eps.shape |
|
return ( |
|
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t |
|
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps |
|
) |
|
|
|
def _predict_xstart_from_xprev(self, x_t, t, xprev): |
|
assert x_t.shape == xprev.shape |
|
return ( |
|
_extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev |
|
- _extract_into_tensor( |
|
self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape |
|
) |
|
* x_t |
|
) |
|
|
|
def _predict_eps_from_xstart(self, x_t, t, pred_xstart): |
|
return ( |
|
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t |
|
- pred_xstart |
|
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) |
|
|
|
def p_sample( |
|
self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None |
|
): |
|
""" |
|
Sample x_{t-1} from the model at the given timestep. |
|
|
|
:param model: the model to sample from. |
|
:param x: the current tensor at x_{t-1}. |
|
:param t: the value of t, starting at 0 for the first diffusion step. |
|
:param clip_denoised: if True, clip the x_start prediction to [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:return: a dict containing the following keys: |
|
- 'sample': a random sample from the model. |
|
- 'pred_xstart': a prediction of x_0. |
|
""" |
|
out = self.p_mean_variance( |
|
model, |
|
x, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
noise = th.randn_like(x) |
|
nonzero_mask = ( |
|
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) |
|
) |
|
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise |
|
return {"sample": sample, "pred_xstart": out["pred_xstart"]} |
|
|
|
def p_sample_loop( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
first_stage_model=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
): |
|
""" |
|
Generate samples from the model. |
|
|
|
:param model: the model module. |
|
:param shape: the shape of the samples, (N, C, H, W). |
|
:param noise: if specified, the noise from the encoder to sample. |
|
Should be of the same shape as `shape`. |
|
:param clip_denoised: if True, clip x_start predictions to [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:param device: if specified, the device to create the samples on. |
|
If not specified, use a model parameter's device. |
|
:param progress: if True, show a tqdm progress bar. |
|
:return: a non-differentiable batch of samples. |
|
""" |
|
final = None |
|
for sample in self.p_sample_loop_progressive( |
|
model, |
|
shape, |
|
noise=noise, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
device=device, |
|
progress=progress, |
|
): |
|
final = sample |
|
return self.decode_first_stage(final["sample"], first_stage_model) |
|
|
|
def p_sample_loop_progressive( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
): |
|
""" |
|
Generate samples from the model and yield intermediate samples from |
|
each timestep of diffusion. |
|
|
|
Arguments are the same as p_sample_loop(). |
|
Returns a generator over dicts, where each dict is the return value of |
|
p_sample(). |
|
""" |
|
if device is None: |
|
device = next(model.parameters()).device |
|
assert isinstance(shape, (tuple, list)) |
|
if noise is not None: |
|
img = noise |
|
else: |
|
img = th.randn(*shape, device=device) |
|
indices = list(range(self.num_timesteps))[::-1] |
|
|
|
if progress: |
|
|
|
from tqdm.auto import tqdm |
|
|
|
indices = tqdm(indices) |
|
|
|
for i in indices: |
|
t = th.tensor([i] * shape[0], device=device) |
|
with th.no_grad(): |
|
out = self.p_sample( |
|
model, |
|
img, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
yield out |
|
img = out["sample"] |
|
|
|
def ddim_sample( |
|
self, |
|
model, |
|
x, |
|
t, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
model_kwargs=None, |
|
eta=0.0, |
|
): |
|
""" |
|
Sample x_{t-1} from the model using DDIM. |
|
|
|
Same usage as p_sample(). |
|
""" |
|
out = self.p_mean_variance( |
|
model, |
|
x, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
|
|
|
|
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) |
|
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) |
|
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) |
|
sigma = ( |
|
eta |
|
* th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) |
|
* th.sqrt(1 - alpha_bar / alpha_bar_prev) |
|
) |
|
|
|
noise = th.randn_like(x) |
|
mean_pred = ( |
|
out["pred_xstart"] * th.sqrt(alpha_bar_prev) |
|
+ th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps |
|
) |
|
nonzero_mask = ( |
|
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) |
|
) |
|
sample = mean_pred + nonzero_mask * sigma * noise |
|
return {"sample": sample, "pred_xstart": out["pred_xstart"]} |
|
|
|
def ddim_reverse_sample( |
|
self, |
|
model, |
|
x, |
|
t, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
model_kwargs=None, |
|
eta=0.0, |
|
): |
|
""" |
|
Sample x_{t+1} from the model using DDIM reverse ODE. |
|
""" |
|
assert eta == 0.0, "Reverse ODE only for deterministic path" |
|
out = self.p_mean_variance( |
|
model, |
|
x, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
|
|
|
|
eps = ( |
|
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x |
|
- out["pred_xstart"] |
|
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape) |
|
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape) |
|
|
|
|
|
mean_pred = ( |
|
out["pred_xstart"] * th.sqrt(alpha_bar_next) |
|
+ th.sqrt(1 - alpha_bar_next) * eps |
|
) |
|
|
|
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} |
|
|
|
def ddim_sample_loop( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
first_stage_model=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
eta=0.0, |
|
): |
|
""" |
|
Generate samples from the model using DDIM. |
|
|
|
Same usage as p_sample_loop(). |
|
""" |
|
final = None |
|
for sample in self.ddim_sample_loop_progressive( |
|
model, |
|
shape, |
|
noise=noise, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
device=device, |
|
progress=progress, |
|
eta=eta, |
|
): |
|
final = sample |
|
return self.decode_first_stage(final["sample"], first_stage_model) |
|
|
|
def ddim_sample_loop_progressive( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
eta=0.0, |
|
): |
|
""" |
|
Use DDIM to sample from the model and yield intermediate samples from |
|
each timestep of DDIM. |
|
|
|
Same usage as p_sample_loop_progressive(). |
|
""" |
|
if device is None: |
|
device = next(model.parameters()).device |
|
assert isinstance(shape, (tuple, list)) |
|
if noise is not None: |
|
img = noise |
|
else: |
|
img = th.randn(*shape, device=device) |
|
indices = list(range(self.num_timesteps))[::-1] |
|
|
|
if progress: |
|
|
|
from tqdm.auto import tqdm |
|
|
|
indices = tqdm(indices) |
|
|
|
for i in indices: |
|
t = th.tensor([i] * shape[0], device=device).long() |
|
with th.no_grad(): |
|
out = self.ddim_sample( |
|
model, |
|
img, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
eta=eta, |
|
) |
|
yield out |
|
img = out["sample"] |
|
|
|
def training_losses(self, model, x_start, t, first_stage_model=None, model_kwargs=None, noise=None): |
|
""" |
|
Compute training losses for a single timestep. |
|
|
|
:param model: the model to evaluate loss on. |
|
:param x_start: the [N x C x ...] tensor of inputs. |
|
:param t: a batch of timestep indices. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:param noise: if specified, the specific Gaussian noise to try to remove. |
|
:return: a dict with the key "loss" containing a tensor of shape [N]. |
|
Some mean or variance settings may also have other keys. |
|
""" |
|
if model_kwargs is None: |
|
model_kwargs = {} |
|
|
|
z_start = self.encode_first_stage(x_start, first_stage_model) |
|
if noise is None: |
|
noise = th.randn_like(z_start) |
|
z_t = self.q_sample(z_start, t, noise=noise) |
|
|
|
terms = {} |
|
|
|
model_output = model(z_t, t, **model_kwargs) |
|
|
|
target = { |
|
ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance( |
|
x_start=z_start, x_t=z_t, t=t |
|
)[0], |
|
ModelMeanType.START_X: z_start, |
|
ModelMeanType.EPSILON: noise, |
|
}[self.model_mean_type] |
|
assert model_output.shape == target.shape == z_start.shape |
|
terms["mse"] = mean_flat((target - model_output) ** 2) |
|
terms["loss"] = terms["mse"] |
|
|
|
if self.model_mean_type == ModelMeanType.START_X: |
|
pred_zstart = model_output.detach() |
|
elif self.model_mean_type == ModelMeanType.EPSILON: |
|
pred_zstart = self._predict_xstart_from_eps(x_t=z_t, t=t, eps=model_output.detach()) |
|
else: |
|
raise NotImplementedError(self.model_mean_type) |
|
|
|
return terms, z_t, pred_zstart |
|
|
|
def _prior_bpd(self, x_start): |
|
""" |
|
Get the prior KL term for the variational lower-bound, measured in |
|
bits-per-dim. |
|
|
|
This term can't be optimized, as it only depends on the encoder. |
|
|
|
:param x_start: the [N x C x ...] tensor of inputs. |
|
:return: a batch of [N] KL values (in bits), one per batch element. |
|
""" |
|
batch_size = x_start.shape[0] |
|
t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) |
|
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) |
|
kl_prior = normal_kl( |
|
mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0 |
|
) |
|
return mean_flat(kl_prior) / np.log(2.0) |
|
|
|
|
|
def _scale_input(self, inputs, t): |
|
return inputs |
|
|
|
def decode_first_stage(self, z_sample, first_stage_model=None): |
|
ori_dtype = z_sample.dtype |
|
if first_stage_model is None: |
|
return z_sample |
|
else: |
|
with th.no_grad(): |
|
z_sample = 1 / self.scale_factor * z_sample |
|
z_sample = z_sample.type(next(first_stage_model.parameters()).dtype) |
|
out = first_stage_model.decode(z_sample) |
|
return out.type(ori_dtype) |
|
|
|
def encode_first_stage(self, y, first_stage_model, up_sample=False): |
|
ori_dtype = y.dtype |
|
if up_sample: |
|
y = F.interpolate(y, scale_factor=self.sf, mode='bicubic') |
|
if first_stage_model is None: |
|
return y |
|
else: |
|
with th.no_grad(): |
|
y = y.type(dtype=next(first_stage_model.parameters()).dtype) |
|
z_y = first_stage_model.encode(y) |
|
out = z_y * self.scale_factor |
|
return out.type(ori_dtype) |
|
|
|
|