#!/usr/bin/env python # -*- coding:utf-8 -*- # Power by Zongsheng Yue 2022-07-13 16:59:27 import os, sys, math, random import cv2 import numpy as np from pathlib import Path from loguru import logger from omegaconf import OmegaConf from contextlib import nullcontext from utils import util_net from utils import util_image from utils import util_common import torch import torch.nn.functional as F import torch.distributed as dist import torch.multiprocessing as mp from datapipe.datasets import create_dataset from utils.util_image import ImageSpliterTh class BaseSampler: def __init__( self, configs, sf=4, use_amp=True, chop_size=128, chop_stride=128, chop_bs=1, padding_offset=16, seed=10000, ): ''' Input: configs: config, see the yaml file in folder ./configs/ sf: int, super-resolution scale seed: int, random seed ''' self.configs = configs self.sf = sf self.chop_size = chop_size self.chop_stride = chop_stride self.chop_bs = chop_bs self.seed = seed self.use_amp = use_amp self.padding_offset = padding_offset self.setup_dist() # setup distributed training: self.num_gpus, self.rank self.setup_seed() self.build_model() def setup_seed(self, seed=None): seed = self.seed if seed is None else seed random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def setup_dist(self, gpu_id=None): num_gpus = torch.cuda.device_count() if num_gpus > 1: # if mp.get_start_method(allow_none=True) is None: # mp.set_start_method('spawn') # rank = int(os.environ['LOCAL_RANK']) # torch.cuda.set_device(rank % num_gpus) # dist.init_process_group(backend='nccl', init_method='env://') rank = 0 torch.cuda.set_device(rank) self.num_gpus = num_gpus print("내가 추가한 거 num_gpus: ", num_gpus) print("내가 추가한 거 self.num_gpus: ", self.num_gpus) self.rank = int(os.environ['LOCAL_RANK']) if num_gpus > 1 else 0 print("내가 추가한 거 self.rank: ", self.rank) def write_log(self, log_str): if self.rank == 0: print(log_str, flush=True) def build_model(self): # diffusion model log_str = f'Building the diffusion model with length: {self.configs.diffusion.params.steps}...' self.write_log(log_str) self.base_diffusion = util_common.instantiate_from_config(self.configs.diffusion) model = util_common.instantiate_from_config(self.configs.model).cuda() ckpt_path =self.configs.model.ckpt_path assert ckpt_path is not None self.write_log(f'Loading Diffusion model from {ckpt_path}...') self.load_model(model, ckpt_path) self.freeze_model(model) self.model = model.eval() # autoencoder model if self.configs.autoencoder is not None: ckpt_path = self.configs.autoencoder.ckpt_path assert ckpt_path is not None self.write_log(f'Loading AutoEncoder model from {ckpt_path}...') autoencoder = util_common.instantiate_from_config(self.configs.autoencoder).cuda() self.load_model(autoencoder, ckpt_path) autoencoder.eval() self.autoencoder = autoencoder else: self.autoencoder = None def load_model(self, model, ckpt_path=None): state = torch.load(ckpt_path, map_location=f"cuda:{self.rank}") if 'state_dict' in state: state = state['state_dict'] util_net.reload_model(model, state) def freeze_model(self, net): for params in net.parameters(): params.requires_grad = False class ResShiftSampler(BaseSampler): def sample_func(self, y0, noise_repeat=False, mask=False): ''' Input: y0: n x c x h x w torch tensor, low-quality image, [-1, 1], RGB mask: image mask for inpainting Output: sample: n x c x h x w, torch tensor, [-1, 1], RGB ''' if noise_repeat: self.setup_seed() offset = self.padding_offset ori_h, ori_w = y0.shape[2:] if not (ori_h % offset == 0 and ori_w % offset == 0): flag_pad = True pad_h = (math.ceil(ori_h / offset)) * offset - ori_h pad_w = (math.ceil(ori_w / offset)) * offset - ori_w y0 = F.pad(y0, pad=(0, pad_w, 0, pad_h), mode='reflect') else: flag_pad = False if self.configs.model.params.cond_lq and mask is not None: model_kwargs={ 'lq':y0, 'mask': mask, } elif self.configs.model.params.cond_lq: model_kwargs={'lq':y0,} else: model_kwargs = None results = self.base_diffusion.p_sample_loop( y=y0, model=self.model, first_stage_model=self.autoencoder, noise=None, noise_repeat=noise_repeat, clip_denoised=(self.autoencoder is None), denoised_fn=None, model_kwargs=model_kwargs, progress=False, ) # This has included the decoding for latent space if flag_pad: results = results[:, :, :ori_h*self.sf, :ori_w*self.sf] return results.clamp_(-1.0, 1.0) def inference(self, in_path, out_path, mask_path=None, mask_back=True, bs=1, noise_repeat=False): ''' Inference demo. Input: in_path: str, folder or image path for LQ image out_path: str, folder save the results bs: int, default bs=1, bs % num_gpus == 0 mask_path: image mask for inpainting ''' def _process_per_image(im_lq_tensor, mask=None): ''' Input: im_lq_tensor: b x c x h x w, torch tensor, [-1, 1], RGB mask: image mask for inpainting, [-1, 1], 1 for unknown area Output: im_sr: h x w x c, numpy array, [0,1], RGB ''' context = torch.cuda.amp.autocast if self.use_amp else nullcontext if im_lq_tensor.shape[2] > self.chop_size or im_lq_tensor.shape[3] > self.chop_size: if mask is not None: im_lq_tensor = torch.cat([im_lq_tensor, mask], dim=1) im_spliter = ImageSpliterTh( im_lq_tensor, self.chop_size, stride=self.chop_stride, sf=self.sf, extra_bs=self.chop_bs, ) for im_lq_pch, index_infos in im_spliter: if mask is not None: im_lq_pch, mask_pch = im_lq_pch[:, :-1], im_lq_pch[:, -1:,] else: mask_pch = None with context(): im_sr_pch = self.sample_func( im_lq_pch, noise_repeat=noise_repeat, mask=mask_pch, ) # 1 x c x h x w, [-1, 1] im_spliter.update(im_sr_pch, index_infos) im_sr_tensor = im_spliter.gather() else: # print(im_lq_tensor.shape) with context(): im_sr_tensor = self.sample_func( im_lq_tensor, noise_repeat=noise_repeat, mask=mask, ) # 1 x c x h x w, [-1, 1] im_sr_tensor = im_sr_tensor * 0.5 + 0.5 if mask_back and mask is not None: mask = mask * 0.5 + 0.5 im_lq_tensor = im_lq_tensor * 0.5 + 0.5 im_sr_tensor = im_sr_tensor * mask + im_lq_tensor * (1 - mask) return im_sr_tensor in_path = Path(in_path) if not isinstance(in_path, Path) else in_path out_path = Path(out_path) if not isinstance(out_path, Path) else out_path if self.rank == 0: assert in_path.exists() if not out_path.exists(): out_path.mkdir(parents=True) if self.num_gpus > 1: dist.barrier() if in_path.is_dir(): if mask_path is None: data_config = {'type': 'base', 'params': {'dir_path': str(in_path), 'transform_type': 'default', 'transform_kwargs': { 'mean': 0.5, 'std': 0.5, }, 'need_path': True, 'recursive': True, 'length': None, } } else: data_config = {'type': 'inpainting_val', 'params': {'lq_path': str(in_path), 'mask_path': mask_path, 'transform_type': 'default', 'transform_kwargs': { 'mean': 0.5, 'std': 0.5, }, 'need_path': True, 'recursive': True, 'im_exts': ['png', 'jpg', 'jpeg', 'JPEG', 'bmp', 'PNG'], 'length': None, } } dataset = create_dataset(data_config) self.write_log(f'Find {len(dataset)} images in {in_path}') dataloader = torch.utils.data.DataLoader( dataset, batch_size=bs, shuffle=False, drop_last=False, ) for data in dataloader: micro_batchsize = math.ceil(bs / self.num_gpus) ind_start = self.rank * micro_batchsize ind_end = ind_start + micro_batchsize micro_data = {key:value[ind_start:ind_end] for key,value in data.items()} if micro_data['lq'].shape[0] > 0: results = _process_per_image( micro_data['lq'].cuda(), mask=micro_data['mask'].cuda() if 'mask' in micro_data else None, ) # b x h x w x c, [0, 1], RGB for jj in range(results.shape[0]): im_sr = util_image.tensor2img(results[jj], rgb2bgr=True, min_max=(0.0, 1.0)) im_name = Path(micro_data['path'][jj]).stem im_path = out_path / f"{im_name}.png" util_image.imwrite(im_sr, im_path, chn='bgr', dtype_in='uint8') if self.num_gpus > 1: dist.barrier() else: im_lq = util_image.imread(in_path, chn='rgb', dtype='float32') # h x w x c im_lq_tensor = util_image.img2tensor(im_lq).cuda() # 1 x c x h x w if mask_path is not None: im_mask = util_image.imread(mask_path, chn='gray', dtype='float32')[:,:, None] # h x w x 1 im_mask_tensor = util_image.img2tensor(im_mask).cuda() # 1 x c x h x w im_sr_tensor = _process_per_image( (im_lq_tensor - 0.5) / 0.5, mask=(im_mask_tensor - 0.5) / 0.5 if mask_path is not None else None, ) im_sr = util_image.tensor2img(im_sr_tensor, rgb2bgr=True, min_max=(0.0, 1.0)) im_path = out_path / f"{in_path.stem}.png" util_image.imwrite(im_sr, im_path, chn='bgr', dtype_in='uint8') self.write_log(f"Processing done, enjoy the results in {str(out_path)}") if __name__ == '__main__': pass