import math import numpy as np import torch def cubic(x): """cubic function used for calculate_weights_indices.""" absx = torch.abs(x) absx2 = absx**2 absx3 = absx**3 return (1.5 * absx3 - 2.5 * absx2 + 1) * ( (absx <= 1).type_as(absx)) + (-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2) * (((absx > 1) * (absx <= 2)).type_as(absx)) def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): """Calculate weights and indices, used for imresize function. Args: in_length (int): Input length. out_length (int): Output length. scale (float): Scale factor. kernel_width (int): Kernel width. antialiasing (bool): Whether to apply anti-aliasing when downsampling. """ if (scale < 1) and antialiasing: # Use a modified kernel (larger kernel width) to simultaneously # interpolate and antialias kernel_width = kernel_width / scale # Output-space coordinates x = torch.linspace(1, out_length, out_length) # Input-space coordinates. Calculate the inverse mapping such that 0.5 # in output space maps to 0.5 in input space, and 0.5 + scale in output # space maps to 1.5 in input space. u = x / scale + 0.5 * (1 - 1 / scale) # What is the left-most pixel that can be involved in the computation? left = torch.floor(u - kernel_width / 2) # What is the maximum number of pixels that can be involved in the # computation? Note: it's OK to use an extra pixel here; if the # corresponding weights are all zero, it will be eliminated at the end # of this function. p = math.ceil(kernel_width) + 2 # The indices of the input pixels involved in computing the k-th output # pixel are in row k of the indices matrix. indices = left.view(out_length, 1).expand(out_length, p) + torch.linspace(0, p - 1, p).view(1, p).expand( out_length, p) # The weights used to compute the k-th output pixel are in row k of the # weights matrix. distance_to_center = u.view(out_length, 1).expand(out_length, p) - indices # apply cubic kernel if (scale < 1) and antialiasing: weights = scale * cubic(distance_to_center * scale) else: weights = cubic(distance_to_center) # Normalize the weights matrix so that each row sums to 1. weights_sum = torch.sum(weights, 1).view(out_length, 1) weights = weights / weights_sum.expand(out_length, p) # If a column in weights is all zero, get rid of it. only consider the # first and last column. weights_zero_tmp = torch.sum((weights == 0), 0) if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): indices = indices.narrow(1, 1, p - 2) weights = weights.narrow(1, 1, p - 2) if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): indices = indices.narrow(1, 0, p - 2) weights = weights.narrow(1, 0, p - 2) weights = weights.contiguous() indices = indices.contiguous() sym_len_s = -indices.min() + 1 sym_len_e = indices.max() - in_length indices = indices + sym_len_s - 1 return weights, indices, int(sym_len_s), int(sym_len_e) @torch.no_grad() def imresize(img, scale, antialiasing=True): """imresize function same as MATLAB. It now only supports bicubic. The same scale applies for both height and width. Args: img (Tensor | Numpy array): Tensor: Input image with shape (c, h, w), [0, 1] range. Numpy: Input image with shape (h, w, c), [0, 1] range. scale (float): Scale factor. The same scale applies for both height and width. antialiasing (bool): Whether to apply anti-aliasing when downsampling. Default: True. Returns: Tensor: Output image with shape (c, h, w), [0, 1] range, w/o round. """ squeeze_flag = False if type(img).__module__ == np.__name__: # numpy type numpy_type = True if img.ndim == 2: img = img[:, :, None] squeeze_flag = True img = torch.from_numpy(img.transpose(2, 0, 1)).float() else: numpy_type = False if img.ndim == 2: img = img.unsqueeze(0) squeeze_flag = True in_c, in_h, in_w = img.size() out_h, out_w = math.ceil(in_h * scale), math.ceil(in_w * scale) kernel_width = 4 kernel = 'cubic' # get weights and indices weights_h, indices_h, sym_len_hs, sym_len_he = calculate_weights_indices(in_h, out_h, scale, kernel, kernel_width, antialiasing) weights_w, indices_w, sym_len_ws, sym_len_we = calculate_weights_indices(in_w, out_w, scale, kernel, kernel_width, antialiasing) # process H dimension # symmetric copying img_aug = torch.FloatTensor(in_c, in_h + sym_len_hs + sym_len_he, in_w) img_aug.narrow(1, sym_len_hs, in_h).copy_(img) sym_patch = img[:, :sym_len_hs, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, 0, sym_len_hs).copy_(sym_patch_inv) sym_patch = img[:, -sym_len_he:, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, sym_len_hs + in_h, sym_len_he).copy_(sym_patch_inv) out_1 = torch.FloatTensor(in_c, out_h, in_w) kernel_width = weights_h.size(1) for i in range(out_h): idx = int(indices_h[i][0]) for j in range(in_c): out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_h[i]) # process W dimension # symmetric copying out_1_aug = torch.FloatTensor(in_c, out_h, in_w + sym_len_ws + sym_len_we) out_1_aug.narrow(2, sym_len_ws, in_w).copy_(out_1) sym_patch = out_1[:, :, :sym_len_ws] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, 0, sym_len_ws).copy_(sym_patch_inv) sym_patch = out_1[:, :, -sym_len_we:] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, sym_len_ws + in_w, sym_len_we).copy_(sym_patch_inv) out_2 = torch.FloatTensor(in_c, out_h, out_w) kernel_width = weights_w.size(1) for i in range(out_w): idx = int(indices_w[i][0]) for j in range(in_c): out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_w[i]) if squeeze_flag: out_2 = out_2.squeeze(0) if numpy_type: out_2 = out_2.numpy() if not squeeze_flag: out_2 = out_2.transpose(1, 2, 0) return out_2