trainer: target: trainer.TrainerDifIRLPIPS model: target: models.unet.UNetModelSwin ckpt_path: ~ params: image_size: 64 in_channels: 8 model_channels: 160 out_channels: 8 attention_resolutions: [64,32,16,8] dropout: 0 channel_mult: [1, 2, 2, 4] num_res_blocks: [2, 2, 2, 2] conv_resample: True dims: 2 use_fp16: False num_head_channels: 32 use_scale_shift_norm: True resblock_updown: False swin_depth: 2 swin_embed_dim: 192 window_size: 8 mlp_ratio: 4 cond_lq: True lq_size: 512 diffusion: target: models.script_util.create_gaussian_diffusion params: sf: 1 schedule_name: exponential schedule_kwargs: power: 0.3 etas_end: 0.99 steps: 4 min_noise_level: 0.2 kappa: 2.0 weighted_mse: False predict_type: xstart timestep_respacing: ~ scale_factor: 1.0 normalize_input: True latent_flag: True autoencoder: target: ldm.models.autoencoder.VQModelTorch ckpt_path: weights/ffhq512_vq_f8_dim8_face.pth use_fp16: True params: embed_dim: 8 n_embed: 4096 ddconfig: double_z: False z_channels: 8 resolution: 512 in_channels: 3 out_ch: 3 ch: 64 ch_mult: - 1 - 2 - 4 - 8 num_res_blocks: - 1 - 2 - 3 - 4 attn_resolutions: [] dropout: 0.0 padding_mode: zeros data: train: type: gfpgan params: dir_path: /mnt/sfs-common/zsyue/database/FFHQ/images512x512 im_exts: png io_backend: type: disk use_hflip: true mean: [0.5, 0.5, 0.5] std: [0.5, 0.5, 0.5] out_size: 512 blur_kernel_size: 41 kernel_list: ['iso', 'aniso'] kernel_prob: [0.5, 0.5] blur_sigma: [0.1, 15] downsample_range: [0.8, 32] noise_range: [0, 20] jpeg_range: [30, 100] color_jitter_prob: ~ color_jitter_pt_prob: ~ gray_prob: 0.01 gt_gray: True need_gt_path: False val: type: base params: dir_path: testdata/faceir/cropped_faces/lq transform_type: default transform_kwargs: mean: 0.5 std: 0.5 im_exts: png need_path: False recursive: False train: # learning rate lr: 5e-5 # learning rate lr_min: 2e-5 lr_schedule: cosin warmup_iterations: 5000 # dataloader batch: [56, 8] microbatch: 7 num_workers: 6 prefetch_factor: 2 # optimization settings weight_decay: 0 ema_rate: 0.999 iterations: 400000 # total iterations # save logging save_freq: 10000 log_freq: [200, 2000, 1] # [training loss, training images, val images] loss_coef: [1.0, 10.0] # [mse, lpips] local_logging: True # manually save images tf_logging: False # tensorboard logging # validation settings use_ema_val: True val_freq: ${train.save_freq} val_y_channel: True val_resolution: ${model.params.lq_size} val_padding_mode: reflect # training setting use_amp: True # amp training seed: 123456 # random seed global_seeding: False # model compile compile: flag: False mode: reduce-overhead # default, reduce-overhead