import enum import math import torch import numpy as np import torch as th import torch.nn.functional as F from .basic_ops import mean_flat from .losses import normal_kl, discretized_gaussian_log_likelihood from ldm.models.autoencoder import AutoencoderKLTorch def get_named_beta_schedule(schedule_name, num_diffusion_timesteps, beta_start, beta_end): """ Get a pre-defined beta schedule for the given name. The beta schedule library consists of beta schedules which remain similar in the limit of num_diffusion_timesteps. Beta schedules may be added, but should not be removed or changed once they are committed to maintain backwards compatibility. """ if schedule_name == "linear": # Linear schedule from Ho et al, extended to work for any number of # diffusion steps. return np.linspace( beta_start**0.5, beta_end**0.5, num_diffusion_timesteps, dtype=np.float64 )**2 else: raise NotImplementedError(f"unknown beta schedule: {schedule_name}") def get_named_eta_schedule( schedule_name, num_diffusion_timesteps, min_noise_level, etas_end=0.99, kappa=1.0, kwargs=None): """ Get a pre-defined eta schedule for the given name. The eta schedule library consists of eta schedules which remain similar in the limit of num_diffusion_timesteps. """ if schedule_name == 'exponential': # ponential = kwargs.get('ponential', None) # start = math.exp(math.log(min_noise_level / kappa) / ponential) # end = math.exp(math.log(etas_end) / (2*ponential)) # xx = np.linspace(start, end, num_diffusion_timesteps, endpoint=True, dtype=np.float64) # sqrt_etas = xx**ponential power = kwargs.get('power', None) # etas_start = min(min_noise_level / kappa, min_noise_level, math.sqrt(0.001)) etas_start = min(min_noise_level / kappa, min_noise_level) increaser = math.exp(1/(num_diffusion_timesteps-1)*math.log(etas_end/etas_start)) base = np.ones([num_diffusion_timesteps, ]) * increaser power_timestep = np.linspace(0, 1, num_diffusion_timesteps, endpoint=True)**power power_timestep *= (num_diffusion_timesteps-1) sqrt_etas = np.power(base, power_timestep) * etas_start elif schedule_name == 'ldm': import scipy.io as sio mat_path = kwargs.get('mat_path', None) sqrt_etas = sio.loadmat(mat_path)['sqrt_etas'].reshape(-1) else: raise ValueError(f"Unknow schedule_name {schedule_name}") return sqrt_etas class ModelMeanType(enum.Enum): """ Which type of output the model predicts. """ START_X = enum.auto() # the model predicts x_0 EPSILON = enum.auto() # the model predicts epsilon PREVIOUS_X = enum.auto() # the model predicts epsilon RESIDUAL = enum.auto() # the model predicts epsilon EPSILON_SCALE = enum.auto() # the model predicts epsilon class LossType(enum.Enum): MSE = enum.auto() # simplied MSE WEIGHTED_MSE = enum.auto() # weighted mse derived from KL class ModelVarTypeDDPM(enum.Enum): """ What is used as the model's output variance. """ LEARNED = enum.auto() LEARNED_RANGE = enum.auto() FIXED_LARGE = enum.auto() FIXED_SMALL = enum.auto() def _extract_into_tensor(arr, timesteps, broadcast_shape): """ Extract values from a 1-D numpy array for a batch of indices. :param arr: the 1-D numpy array. :param timesteps: a tensor of indices into the array to extract. :param broadcast_shape: a larger shape of K dimensions with the batch dimension equal to the length of timesteps. :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. """ res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() while len(res.shape) < len(broadcast_shape): res = res[..., None] return res.expand(broadcast_shape) class GaussianDiffusion: """ Utilities for training and sampling diffusion models. :param sqrt_etas: a 1-D numpy array of etas for each diffusion timestep, starting at T and going to 1. :param kappa: a scaler controling the variance of the diffusion kernel :param model_mean_type: a ModelMeanType determining what the model outputs. :param loss_type: a LossType determining the loss function to use. model so that they are always scaled like in the original paper (0 to 1000). :param scale_factor: a scaler to scale the latent code :param sf: super resolution factor """ def __init__( self, *, sqrt_etas, kappa, model_mean_type, loss_type, sf=4, scale_factor=None, normalize_input=True, latent_flag=True, ): self.kappa = kappa self.model_mean_type = model_mean_type self.loss_type = loss_type self.scale_factor = scale_factor self.normalize_input = normalize_input self.latent_flag = latent_flag self.sf = sf # Use float64 for accuracy. self.sqrt_etas = sqrt_etas self.etas = sqrt_etas**2 assert len(self.etas.shape) == 1, "etas must be 1-D" assert (self.etas > 0).all() and (self.etas <= 1).all() self.num_timesteps = int(self.etas.shape[0]) self.etas_prev = np.append(0.0, self.etas[:-1]) self.alpha = self.etas - self.etas_prev # calculations for posterior q(x_{t-1} | x_t, x_0) self.posterior_variance = kappa**2 * self.etas_prev / self.etas * self.alpha self.posterior_variance_clipped = np.append( self.posterior_variance[1], self.posterior_variance[1:] ) # log calculation clipped because the posterior variance is 0 at the # beginning of the diffusion chain. self.posterior_log_variance_clipped = np.log(self.posterior_variance_clipped) self.posterior_mean_coef1 = self.etas_prev / self.etas self.posterior_mean_coef2 = self.alpha / self.etas # weight for the mse loss if model_mean_type in [ModelMeanType.START_X, ModelMeanType.RESIDUAL]: weight_loss_mse = 0.5 / self.posterior_variance_clipped * (self.alpha / self.etas)**2 elif model_mean_type in [ModelMeanType.EPSILON, ModelMeanType.EPSILON_SCALE] : weight_loss_mse = 0.5 / self.posterior_variance_clipped * ( kappa * self.alpha / ((1-self.etas) * self.sqrt_etas) )**2 else: raise NotImplementedError(model_mean_type) # self.weight_loss_mse = np.append(weight_loss_mse[1], weight_loss_mse[1:]) self.weight_loss_mse = weight_loss_mse def q_mean_variance(self, x_start, y, t): """ Get the distribution q(x_t | x_0). :param x_start: the [N x C x ...] tensor of noiseless inputs. :param y: the [N x C x ...] tensor of degraded inputs. :param t: the number of diffusion steps (minus 1). Here, 0 means one step. :return: A tuple (mean, variance, log_variance), all of x_start's shape. """ mean = _extract_into_tensor(self.etas, t, x_start.shape) * (y - x_start) + x_start variance = _extract_into_tensor(self.etas, t, x_start.shape) * self.kappa**2 log_variance = variance.log() return mean, variance, log_variance def q_sample(self, x_start, y, t, noise=None): """ Diffuse the data for a given number of diffusion steps. In other words, sample from q(x_t | x_0). :param x_start: the initial data batch. :param y: the [N x C x ...] tensor of degraded inputs. :param t: the number of diffusion steps (minus 1). Here, 0 means one step. :param noise: if specified, the split-out normal noise. :return: A noisy version of x_start. """ if noise is None: noise = th.randn_like(x_start) assert noise.shape == x_start.shape return ( _extract_into_tensor(self.etas, t, x_start.shape) * (y - x_start) + x_start + _extract_into_tensor(self.sqrt_etas * self.kappa, t, x_start.shape) * noise ) def q_posterior_mean_variance(self, x_start, x_t, t): """ Compute the mean and variance of the diffusion posterior: q(x_{t-1} | x_t, x_0) """ assert x_start.shape == x_t.shape posterior_mean = ( _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_t + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_start ) posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) posterior_log_variance_clipped = _extract_into_tensor( self.posterior_log_variance_clipped, t, x_t.shape ) assert ( posterior_mean.shape[0] == posterior_variance.shape[0] == posterior_log_variance_clipped.shape[0] == x_start.shape[0] ) return posterior_mean, posterior_variance, posterior_log_variance_clipped def p_mean_variance( self, model, x_t, y, t, clip_denoised=True, denoised_fn=None, model_kwargs=None ): """ Apply the model to get p(x_{t-1} | x_t), as well as a prediction of the initial x, x_0. :param model: the model, which takes a signal and a batch of timesteps as input. :param x_t: the [N x C x ...] tensor at time t. :param y: the [N x C x ...] tensor of degraded inputs. :param t: a 1-D Tensor of timesteps. :param clip_denoised: if True, clip the denoised signal into [-1, 1]. :param denoised_fn: if not None, a function which applies to the x_start prediction before it is used to sample. Applies before clip_denoised. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :return: a dict with the following keys: - 'mean': the model mean output. - 'variance': the model variance output. - 'log_variance': the log of 'variance'. - 'pred_xstart': the prediction for x_0. """ if model_kwargs is None: model_kwargs = {} B, C = x_t.shape[:2] assert t.shape == (B,) model_output = model(self._scale_input(x_t, t), t, **model_kwargs) model_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) model_log_variance = _extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) def process_xstart(x): if denoised_fn is not None: x = denoised_fn(x) if clip_denoised: return x.clamp(-1, 1) return x if self.model_mean_type == ModelMeanType.START_X: # predict x_0 pred_xstart = process_xstart(model_output) elif self.model_mean_type == ModelMeanType.RESIDUAL: # predict x_0 pred_xstart = process_xstart( self._predict_xstart_from_residual(y=y, residual=model_output) ) elif self.model_mean_type == ModelMeanType.EPSILON: pred_xstart = process_xstart( self._predict_xstart_from_eps(x_t=x_t, y=y, t=t, eps=model_output) ) # predict \eps elif self.model_mean_type == ModelMeanType.EPSILON_SCALE: pred_xstart = process_xstart( self._predict_xstart_from_eps_scale(x_t=x_t, y=y, t=t, eps=model_output) ) # predict \eps else: raise ValueError(f'Unknown Mean type: {self.model_mean_type}') model_mean, _, _ = self.q_posterior_mean_variance( x_start=pred_xstart, x_t=x_t, t=t ) assert ( model_mean.shape == model_log_variance.shape == pred_xstart.shape == x_t.shape ) return { "mean": model_mean, "variance": model_variance, "log_variance": model_log_variance, "pred_xstart": pred_xstart, } def _predict_xstart_from_eps(self, x_t, y, t, eps): assert x_t.shape == eps.shape return ( x_t - _extract_into_tensor(self.sqrt_etas, t, x_t.shape) * self.kappa * eps - _extract_into_tensor(self.etas, t, x_t.shape) * y ) / _extract_into_tensor(1 - self.etas, t, x_t.shape) def _predict_xstart_from_eps_scale(self, x_t, y, t, eps): assert x_t.shape == eps.shape return ( x_t - eps - _extract_into_tensor(self.etas, t, x_t.shape) * y ) / _extract_into_tensor(1 - self.etas, t, x_t.shape) def _predict_xstart_from_residual(self, y, residual): assert y.shape == residual.shape return (y - residual) def _predict_eps_from_xstart(self, x_t, y, t, pred_xstart): return ( x_t - _extract_into_tensor(1 - self.etas, t, x_t.shape) * pred_xstart - _extract_into_tensor(self.etas, t, x_t.shape) * y ) / _extract_into_tensor(self.kappa * self.sqrt_etas, t, x_t.shape) def p_sample(self, model, x, y, t, clip_denoised=True, denoised_fn=None, model_kwargs=None, noise_repeat=False): """ Sample x_{t-1} from the model at the given timestep. :param model: the model to sample from. :param x: the current tensor at x_t. :param y: the [N x C x ...] tensor of degraded inputs. :param t: the value of t, starting at 0 for the first diffusion step. :param clip_denoised: if True, clip the x_start prediction to [-1, 1]. :param denoised_fn: if not None, a function which applies to the x_start prediction before it is used to sample. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :return: a dict containing the following keys: - 'sample': a random sample from the model. - 'pred_xstart': a prediction of x_0. """ out = self.p_mean_variance( model, x, y, t, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) noise = th.randn_like(x) if noise_repeat: noise = noise[0,].repeat(x.shape[0], 1, 1, 1) nonzero_mask = ( (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) ) # no noise when t == 0 sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise return {"sample": sample, "pred_xstart": out["pred_xstart"], "mean":out["mean"]} def p_sample_loop( self, y, model, first_stage_model=None, consistencydecoder=None, noise=None, noise_repeat=False, clip_denoised=True, denoised_fn=None, model_kwargs=None, device=None, progress=False, ): """ Generate samples from the model. :param y: the [N x C x ...] tensor of degraded inputs. :param model: the model module. :param first_stage_model: the autoencoder model :param noise: if specified, the noise from the encoder to sample. Should be of the same shape as `shape`. :param clip_denoised: if True, clip x_start predictions to [-1, 1]. :param denoised_fn: if not None, a function which applies to the x_start prediction before it is used to sample. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :param device: if specified, the device to create the samples on. If not specified, use a model parameter's device. :param progress: if True, show a tqdm progress bar. :return: a non-differentiable batch of samples. """ final = None for sample in self.p_sample_loop_progressive( y, model, first_stage_model=first_stage_model, noise=noise, noise_repeat=noise_repeat, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, device=device, progress=progress, ): final = sample["sample"] with th.no_grad(): out = self.decode_first_stage( final, first_stage_model=first_stage_model, consistencydecoder=consistencydecoder, ) return out def p_sample_loop_progressive( self, y, model, first_stage_model=None, noise=None, noise_repeat=False, clip_denoised=True, denoised_fn=None, model_kwargs=None, device=None, progress=False, ): """ Generate samples from the model and yield intermediate samples from each timestep of diffusion. Arguments are the same as p_sample_loop(). Returns a generator over dicts, where each dict is the return value of p_sample(). """ if device is None: device = next(model.parameters()).device z_y = self.encode_first_stage(y, first_stage_model, up_sample=True) # generating noise if noise is None: noise = th.randn_like(z_y) if noise_repeat: noise = noise[0,].repeat(z_y.shape[0], 1, 1, 1) z_sample = self.prior_sample(z_y, noise) indices = list(range(self.num_timesteps))[::-1] if progress: # Lazy import so that we don't depend on tqdm. from tqdm.auto import tqdm indices = tqdm(indices) for i in indices: t = th.tensor([i] * y.shape[0], device=device) with th.no_grad(): out = self.p_sample( model, z_sample, z_y, t, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, noise_repeat=noise_repeat, ) yield out z_sample = out["sample"] def decode_first_stage(self, z_sample, first_stage_model=None, consistencydecoder=None): batch_size = z_sample.shape[0] data_dtype = z_sample.dtype if consistencydecoder is None: model = first_stage_model decoder = first_stage_model.decode model_dtype = next(model.parameters()).dtype else: model = consistencydecoder decoder = consistencydecoder model_dtype = next(model.ckpt.parameters()).dtype if first_stage_model is None: return z_sample else: z_sample = 1 / self.scale_factor * z_sample if consistencydecoder is None: out = decoder(z_sample.type(model_dtype)) else: with th.cuda.amp.autocast(): out = decoder(z_sample) if not model_dtype == data_dtype: out = out.type(data_dtype) return out def encode_first_stage(self, y, first_stage_model, up_sample=False): data_dtype = y.dtype model_dtype = next(first_stage_model.parameters()).dtype if up_sample and self.sf != 1: y = F.interpolate(y, scale_factor=self.sf, mode='bicubic') if first_stage_model is None: return y else: if not model_dtype == data_dtype: y = y.type(model_dtype) with th.no_grad(): z_y = first_stage_model.encode(y) out = z_y * self.scale_factor if not model_dtype == data_dtype: out = out.type(data_dtype) return out def prior_sample(self, y, noise=None): """ Generate samples from the prior distribution, i.e., q(x_T|x_0) ~= N(x_T|y, ~) :param y: the [N x C x ...] tensor of degraded inputs. :param noise: the [N x C x ...] tensor of degraded inputs. """ if noise is None: noise = th.randn_like(y) t = th.tensor([self.num_timesteps-1,] * y.shape[0], device=y.device).long() return y + _extract_into_tensor(self.kappa * self.sqrt_etas, t, y.shape) * noise def training_losses( self, model, x_start, y, t, first_stage_model=None, model_kwargs=None, noise=None, ): """ Compute training losses for a single timestep. :param model: the model to evaluate loss on. :param first_stage_model: autoencoder model :param x_start: the [N x C x ...] tensor of inputs. :param y: the [N x C x ...] tensor of degraded inputs. :param t: a batch of timestep indices. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :param noise: if specified, the specific Gaussian noise to try to remove. :param up_sample_lq: Upsampling low-quality image before encoding :return: a dict with the key "loss" containing a tensor of shape [N]. Some mean or variance settings may also have other keys. """ if model_kwargs is None: model_kwargs = {} z_y = self.encode_first_stage(y, first_stage_model, up_sample=True) z_start = self.encode_first_stage(x_start, first_stage_model, up_sample=False) if noise is None: noise = th.randn_like(z_start) z_t = self.q_sample(z_start, z_y, t, noise=noise) terms = {} if self.loss_type == LossType.MSE or self.loss_type == LossType.WEIGHTED_MSE: model_output = model(self._scale_input(z_t, t), t, **model_kwargs) target = { ModelMeanType.START_X: z_start, ModelMeanType.RESIDUAL: z_y - z_start, ModelMeanType.EPSILON: noise, ModelMeanType.EPSILON_SCALE: noise*self.kappa*_extract_into_tensor(self.sqrt_etas, t, noise.shape), }[self.model_mean_type] assert model_output.shape == target.shape == z_start.shape terms["mse"] = mean_flat((target - model_output) ** 2) if self.model_mean_type == ModelMeanType.EPSILON_SCALE: terms["mse"] /= (self.kappa**2 * _extract_into_tensor(self.etas, t, t.shape)) if self.loss_type == LossType.WEIGHTED_MSE: weights = _extract_into_tensor(self.weight_loss_mse, t, t.shape) else: weights = 1 terms["mse"] *= weights else: raise NotImplementedError(self.loss_type) if self.model_mean_type == ModelMeanType.START_X: # predict x_0 pred_zstart = model_output elif self.model_mean_type == ModelMeanType.EPSILON: pred_zstart = self._predict_xstart_from_eps(x_t=z_t, y=z_y, t=t, eps=model_output) elif self.model_mean_type == ModelMeanType.RESIDUAL: pred_zstart = self._predict_xstart_from_residual(y=z_y, residual=model_output) elif self.model_mean_type == ModelMeanType.EPSILON_SCALE: pred_zstart = self._predict_xstart_from_eps_scale(x_t=z_t, y=z_y, t=t, eps=model_output) else: raise NotImplementedError(self.model_mean_type) return terms, z_t, pred_zstart def _scale_input(self, inputs, t): if self.normalize_input: if self.latent_flag: # the variance of latent code is around 1.0 std = th.sqrt(_extract_into_tensor(self.etas, t, inputs.shape) * self.kappa**2 + 1) inputs_norm = inputs / std else: inputs_max = _extract_into_tensor(self.sqrt_etas, t, inputs.shape) * self.kappa * 3 + 1 inputs_norm = inputs / inputs_max else: inputs_norm = inputs return inputs_norm class GaussianDiffusionDDPM: """ Utilities for training and sampling diffusion models. Ported directly from here, and then adapted over time to further experimentation. https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 :param betas: a 1-D numpy array of betas for each diffusion timestep, starting at T and going to 1. :param model_mean_type: a ModelMeanType determining what the model outputs. :param model_var_type: a ModelVarTypeDDPM determining how variance is output. :param loss_type: a LossType determining the loss function to use. :param rescale_timesteps: if True, pass floating point timesteps into the model so that they are always scaled like in the original paper (0 to 1000). """ def __init__( self, *, betas, model_mean_type, model_var_type, scale_factor=None, sf=4, ): self.model_mean_type = model_mean_type # EPSILON self.model_var_type = model_var_type # LEARNED_RANGE self.scale_factor = scale_factor # scale factor in latent space default True self.sf=sf # Use float64 for accuracy. betas = np.array(betas, dtype=np.float64) self.betas = betas assert len(betas.shape) == 1, "betas must be 1-D" assert (betas > 0).all() and (betas <= 1).all() self.num_timesteps = int(betas.shape[0]) alphas = 1.0 - betas self.alphas_cumprod = np.cumprod(alphas, axis=0) self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) # calculations for diffusion q(x_t | x_{t-1}) and others self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) # calculations for posterior q(x_{t-1} | x_t, x_0) self.posterior_variance = ( betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) ) # log calculation clipped because the posterior variance is 0 at the # beginning of the diffusion chain. self.posterior_log_variance_clipped = np.log( np.append(self.posterior_variance[1], self.posterior_variance[1:]) ) self.posterior_mean_coef1 = ( betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) ) self.posterior_mean_coef2 = ( (1.0 - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - self.alphas_cumprod) ) def q_mean_variance(self, x_start, t): """ Get the distribution q(x_t | x_0). :param x_start: the [N x C x ...] tensor of noiseless inputs. :param t: the number of diffusion steps (minus 1). Here, 0 means one step. :return: A tuple (mean, variance, log_variance), all of x_start's shape. """ mean = ( _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start ) variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) log_variance = _extract_into_tensor( self.log_one_minus_alphas_cumprod, t, x_start.shape ) return mean, variance, log_variance def q_sample(self, x_start, t, noise=None): """ Diffuse the data for a given number of diffusion steps. In other words, sample from q(x_t | x_0). :param x_start: the initial data batch. :param t: the number of diffusion steps (minus 1). Here, 0 means one step. :param noise: if specified, the split-out normal noise. :return: A noisy version of x_start. """ if noise is None: noise = th.randn_like(x_start) assert noise.shape == x_start.shape return ( _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise ) def q_posterior_mean_variance(self, x_start, x_t, t): """ Compute the mean and variance of the diffusion posterior: q(x_{t-1} | x_t, x_0) """ assert x_start.shape == x_t.shape posterior_mean = ( _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t ) posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) posterior_log_variance_clipped = _extract_into_tensor( self.posterior_log_variance_clipped, t, x_t.shape ) assert ( posterior_mean.shape[0] == posterior_variance.shape[0] == posterior_log_variance_clipped.shape[0] == x_start.shape[0] ) return posterior_mean, posterior_variance, posterior_log_variance_clipped def p_mean_variance( self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None ): """ Apply the model to get p(x_{t-1} | x_t), as well as a prediction of the initial x, x_0. :param model: the model, which takes a signal and a batch of timesteps as input. :param x: the [N x C x ...] tensor at time t. :param t: a 1-D Tensor of timesteps. :param clip_denoised: if True, clip the denoised signal into [-1, 1]. :param denoised_fn: if not None, a function which applies to the x_start prediction before it is used to sample. Applies before clip_denoised. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :return: a dict with the following keys: - 'mean': the model mean output. - 'variance': the model variance output. - 'log_variance': the log of 'variance'. - 'pred_xstart': the prediction for x_0. """ if model_kwargs is None: model_kwargs = {} B, C = x.shape[:2] assert t.shape == (B,) model_output = model(x, t, **model_kwargs) if self.model_var_type in [ModelVarTypeDDPM.LEARNED, ModelVarTypeDDPM.LEARNED_RANGE]: assert model_output.shape == (B, C * 2, *x.shape[2:]) model_output, model_var_values = th.split(model_output, C, dim=1) if self.model_var_type == ModelVarTypeDDPM.LEARNED: model_log_variance = model_var_values model_variance = th.exp(model_log_variance) else: min_log = _extract_into_tensor( self.posterior_log_variance_clipped, t, x.shape ) max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) # The model_var_values is [-1, 1] for [min_var, max_var]. frac = (model_var_values + 1) / 2 model_log_variance = frac * max_log + (1 - frac) * min_log model_variance = th.exp(model_log_variance) else: model_variance, model_log_variance = { # for fixedlarge, we set the initial (log-)variance like so # to get a better decoder log likelihood. ModelVarTypeDDPM.FIXED_LARGE: ( np.append(self.posterior_variance[1], self.betas[1:]), np.log(np.append(self.posterior_variance[1], self.betas[1:])), ), ModelVarTypeDDPM.FIXED_SMALL: ( self.posterior_variance, self.posterior_log_variance_clipped, ), }[self.model_var_type] model_variance = _extract_into_tensor(model_variance, t, x.shape) model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape) def process_xstart(x): if denoised_fn is not None: x = denoised_fn(x) if clip_denoised: return x.clamp(-1, 1) return x if self.model_mean_type == ModelMeanType.PREVIOUS_X: # predict x_{t-1} pred_xstart = process_xstart( self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output) ) model_mean = model_output elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]: if self.model_mean_type == ModelMeanType.START_X: # predict x_0 pred_xstart = process_xstart(model_output) else: pred_xstart = process_xstart( self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output) ) # predict \eps model_mean, _, _ = self.q_posterior_mean_variance( x_start=pred_xstart, x_t=x, t=t ) else: raise NotImplementedError(self.model_mean_type) assert ( model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape ) return { "mean": model_mean, "variance": model_variance, "log_variance": model_log_variance, "pred_xstart": pred_xstart, } def _predict_xstart_from_eps(self, x_t, t, eps): assert x_t.shape == eps.shape return ( _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps ) def _predict_xstart_from_xprev(self, x_t, t, xprev): assert x_t.shape == xprev.shape return ( # (xprev - coef2*x_t) / coef1 _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev - _extract_into_tensor( self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape ) * x_t ) def _predict_eps_from_xstart(self, x_t, t, pred_xstart): return ( _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) def p_sample( self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None ): """ Sample x_{t-1} from the model at the given timestep. :param model: the model to sample from. :param x: the current tensor at x_{t-1}. :param t: the value of t, starting at 0 for the first diffusion step. :param clip_denoised: if True, clip the x_start prediction to [-1, 1]. :param denoised_fn: if not None, a function which applies to the x_start prediction before it is used to sample. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :return: a dict containing the following keys: - 'sample': a random sample from the model. - 'pred_xstart': a prediction of x_0. """ out = self.p_mean_variance( model, x, t, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) noise = th.randn_like(x) nonzero_mask = ( (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) ) # no noise when t == 0 sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise return {"sample": sample, "pred_xstart": out["pred_xstart"]} def p_sample_loop( self, model, shape, noise=None, clip_denoised=True, denoised_fn=None, first_stage_model=None, model_kwargs=None, device=None, progress=False, ): """ Generate samples from the model. :param model: the model module. :param shape: the shape of the samples, (N, C, H, W). :param noise: if specified, the noise from the encoder to sample. Should be of the same shape as `shape`. :param clip_denoised: if True, clip x_start predictions to [-1, 1]. :param denoised_fn: if not None, a function which applies to the x_start prediction before it is used to sample. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :param device: if specified, the device to create the samples on. If not specified, use a model parameter's device. :param progress: if True, show a tqdm progress bar. :return: a non-differentiable batch of samples. """ final = None for sample in self.p_sample_loop_progressive( model, shape, noise=noise, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, device=device, progress=progress, ): final = sample return self.decode_first_stage(final["sample"], first_stage_model) def p_sample_loop_progressive( self, model, shape, noise=None, clip_denoised=True, denoised_fn=None, model_kwargs=None, device=None, progress=False, ): """ Generate samples from the model and yield intermediate samples from each timestep of diffusion. Arguments are the same as p_sample_loop(). Returns a generator over dicts, where each dict is the return value of p_sample(). """ if device is None: device = next(model.parameters()).device assert isinstance(shape, (tuple, list)) if noise is not None: img = noise else: img = th.randn(*shape, device=device) indices = list(range(self.num_timesteps))[::-1] if progress: # Lazy import so that we don't depend on tqdm. from tqdm.auto import tqdm indices = tqdm(indices) for i in indices: t = th.tensor([i] * shape[0], device=device) with th.no_grad(): out = self.p_sample( model, img, t, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) yield out img = out["sample"] def ddim_sample( self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None, eta=0.0, ): """ Sample x_{t-1} from the model using DDIM. Same usage as p_sample(). """ out = self.p_mean_variance( model, x, t, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) # Usually our model outputs epsilon, but we re-derive it # in case we used x_start or x_prev prediction. eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) sigma = ( eta * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) * th.sqrt(1 - alpha_bar / alpha_bar_prev) ) # Equation 12. noise = th.randn_like(x) mean_pred = ( out["pred_xstart"] * th.sqrt(alpha_bar_prev) + th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps ) nonzero_mask = ( (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) ) # no noise when t == 0 sample = mean_pred + nonzero_mask * sigma * noise return {"sample": sample, "pred_xstart": out["pred_xstart"]} def ddim_reverse_sample( self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None, eta=0.0, ): """ Sample x_{t+1} from the model using DDIM reverse ODE. """ assert eta == 0.0, "Reverse ODE only for deterministic path" out = self.p_mean_variance( model, x, t, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) # Usually our model outputs epsilon, but we re-derive it # in case we used x_start or x_prev prediction. eps = ( _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x - out["pred_xstart"] ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape) alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape) # Equation 12. reversed mean_pred = ( out["pred_xstart"] * th.sqrt(alpha_bar_next) + th.sqrt(1 - alpha_bar_next) * eps ) return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} def ddim_sample_loop( self, model, shape, noise=None, first_stage_model=None, clip_denoised=True, denoised_fn=None, model_kwargs=None, device=None, progress=False, eta=0.0, ): """ Generate samples from the model using DDIM. Same usage as p_sample_loop(). """ final = None for sample in self.ddim_sample_loop_progressive( model, shape, noise=noise, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, device=device, progress=progress, eta=eta, ): final = sample return self.decode_first_stage(final["sample"], first_stage_model) def ddim_sample_loop_progressive( self, model, shape, noise=None, clip_denoised=True, denoised_fn=None, model_kwargs=None, device=None, progress=False, eta=0.0, ): """ Use DDIM to sample from the model and yield intermediate samples from each timestep of DDIM. Same usage as p_sample_loop_progressive(). """ if device is None: device = next(model.parameters()).device assert isinstance(shape, (tuple, list)) if noise is not None: img = noise else: img = th.randn(*shape, device=device) indices = list(range(self.num_timesteps))[::-1] if progress: # Lazy import so that we don't depend on tqdm. from tqdm.auto import tqdm indices = tqdm(indices) for i in indices: t = th.tensor([i] * shape[0], device=device).long() with th.no_grad(): out = self.ddim_sample( model, img, t, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, eta=eta, ) yield out img = out["sample"] def training_losses(self, model, x_start, t, first_stage_model=None, model_kwargs=None, noise=None): """ Compute training losses for a single timestep. :param model: the model to evaluate loss on. :param x_start: the [N x C x ...] tensor of inputs. :param t: a batch of timestep indices. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :param noise: if specified, the specific Gaussian noise to try to remove. :return: a dict with the key "loss" containing a tensor of shape [N]. Some mean or variance settings may also have other keys. """ if model_kwargs is None: model_kwargs = {} z_start = self.encode_first_stage(x_start, first_stage_model) if noise is None: noise = th.randn_like(z_start) z_t = self.q_sample(z_start, t, noise=noise) terms = {} model_output = model(z_t, t, **model_kwargs) target = { ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance( x_start=z_start, x_t=z_t, t=t )[0], ModelMeanType.START_X: z_start, ModelMeanType.EPSILON: noise, }[self.model_mean_type] assert model_output.shape == target.shape == z_start.shape terms["mse"] = mean_flat((target - model_output) ** 2) terms["loss"] = terms["mse"] if self.model_mean_type == ModelMeanType.START_X: # predict x_0 pred_zstart = model_output.detach() elif self.model_mean_type == ModelMeanType.EPSILON: pred_zstart = self._predict_xstart_from_eps(x_t=z_t, t=t, eps=model_output.detach()) else: raise NotImplementedError(self.model_mean_type) return terms, z_t, pred_zstart def _prior_bpd(self, x_start): """ Get the prior KL term for the variational lower-bound, measured in bits-per-dim. This term can't be optimized, as it only depends on the encoder. :param x_start: the [N x C x ...] tensor of inputs. :return: a batch of [N] KL values (in bits), one per batch element. """ batch_size = x_start.shape[0] t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) # q(x_t|x_0) kl_prior = normal_kl( mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0 ) return mean_flat(kl_prior) / np.log(2.0) def _scale_input(self, inputs, t): return inputs def decode_first_stage(self, z_sample, first_stage_model=None): ori_dtype = z_sample.dtype if first_stage_model is None: return z_sample else: with th.no_grad(): z_sample = 1 / self.scale_factor * z_sample z_sample = z_sample.type(next(first_stage_model.parameters()).dtype) out = first_stage_model.decode(z_sample) return out.type(ori_dtype) def encode_first_stage(self, y, first_stage_model, up_sample=False): ori_dtype = y.dtype if up_sample: y = F.interpolate(y, scale_factor=self.sf, mode='bicubic') if first_stage_model is None: return y else: with th.no_grad(): y = y.type(dtype=next(first_stage_model.parameters()).dtype) z_y = first_stage_model.encode(y) out = z_y * self.scale_factor return out.type(ori_dtype)