File size: 14,161 Bytes
687d97d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e01670
687d97d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import torch
import torch.nn as nn
from transformers import PreTrainedModel, PretrainedConfig
from .modeling_llama_kv import LlamaForCausalLM as KVLlamaForCausalLM
from .utils import *
from .kv_cache import initialize_past_key_values
from .choices import mc_sim_7b_63
from transformers import AutoTokenizer
import os
from huggingface_hub import hf_hub_download
from .cnets import Model
from .configs import EConfig





class ResBlock(nn.Module):
    """
    A Residual Block module.

    This module performs a linear transformation followed by a SiLU activation,
    and then adds the result to the original input, creating a residual connection.

    Args:
        hidden_size (int): The size of the hidden layers in the block.
    """

    def __init__(self, hidden_size):
        super().__init__()
        self.linear = nn.Linear(hidden_size, hidden_size)
        # Initialize as an identity mapping
        torch.nn.init.zeros_(self.linear.weight)
        # Use SiLU activation to keep consistent with the Llama model
        self.act = nn.SiLU()

    def forward(self, x):
        """
        Forward pass of the ResBlock.

        Args:
            x (torch.Tensor): Input tensor.

        Returns:
            torch.Tensor: Output after the residual connection and activation.
        """
        return x + self.act(self.linear(x))


class EaModel(nn.Module):


    def __init__(
        self,
        base_model,
        base_model_name_or_path,
        ea_model_path,
    ):

        super().__init__()
        self.base_model = base_model
        self.config = base_model.config
        self.hidden_size = base_model.lm_head.weight.shape[-1]
        self.vocab_size = base_model.lm_head.weight.shape[0]
        self.base_model_name_or_path = base_model_name_or_path
        self.tokenizer = AutoTokenizer.from_pretrained(self.base_model_name_or_path)
        config = EConfig.from_pretrained(ea_model_path)
        self.ea_layer = Model(config)


        device = base_model.model.layers[-1].self_attn.q_proj.weight.device
        self.ea_layer.to(torch.float16).to(device)
        self.ea_layer.init_tree()



    def get_tokenizer(self):
        """Get the tokenizer of the base model.

        Returns:
            Tokenizer: The tokenizer of the base model.
        """
        return self.tokenizer

    @classmethod
    def from_pretrained(
        cls,
        base_model_path=None,
        ea_model_path=None,
        **kwargs,
    ):


            
        base_model = KVLlamaForCausalLM.from_pretrained(
            base_model_path, **kwargs
        )

        model = cls(
            base_model,
            base_model_path,
            ea_model_path
        )

        ea_layer_state_dict = torch.load(os.path.join(ea_model_path,"pytorch_model.bin"), map_location=base_model.device)
        model.ea_layer.load_state_dict(ea_layer_state_dict, strict=False)

        return model

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        labels=None,
        past_key_values=None,
        output_orig=False,
        position_ids=None,
        init=True,
        logits_processor=None
    ):


        with torch.inference_mode():
            # Pass input through the base model
            outputs = self.base_model.model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                past_key_values=past_key_values,
                position_ids=position_ids,
            )
            if output_orig:
                orig = self.base_model.lm_head(outputs[0])
            hidden_states = outputs[0].clone()
        if init:
            if logits_processor is not None:
                logits=orig[:, -1]
                logits=logits_processor(None,logits)
                probabilities = torch.nn.functional.softmax(logits, dim=1)
                token=torch.multinomial(probabilities, 1)
            else:
                token = torch.argmax(orig[:,-1])
                token=token[None,None]
            input_ids=torch.cat((input_ids,token.to(input_ids.device)),dim=1)
            # Clone the output hidden states

            ea_logits = self.ea_layer.topK_genrate(hidden_states,input_ids,self.base_model.lm_head,logits_processor)
            if output_orig:
                return ea_logits, outputs, orig,hidden_states,token
            return ea_logits,hidden_states,token
        else:
            if output_orig:
                return outputs,orig,hidden_states

    @torch.no_grad()
    def eagenerate(
        self,
        input_ids,
        temperature=0.0,
        top_p=0.0,
        top_k=0.0,
        max_new_tokens=512,
        max_length=2048,
        tree_choices=mc_sim_7b_63,

    ):
        if temperature>1e-5:
            logits_processor=prepare_logits_processor(temperature=temperature,top_p=top_p,top_k=top_k)
        else:
            logits_processor=None
        assert input_ids.shape[0] == 1, "Only support batch size 1 for now!!"
        # Avoid modifying the input_ids in-place
        input_ids = input_ids.clone()
        self.ea_layer.reset_kv()

        if hasattr(self, "tree_choices") and self.tree_choices == tree_choices:
            tree_buffers = self.tree_buffers
        else:
            tree_buffers = generate_tree_buffers(
                tree_choices, device=self.base_model.model.layers[-1].self_attn.q_proj.weight.device
            )
        self.tree_buffers = tree_buffers
        self.tree_choices = tree_choices

        # Initialize the past key and value states
        if hasattr(self, "past_key_values"):
            past_key_values = self.past_key_values
            past_key_values_data = self.past_key_values_data
            current_length_data = self.current_length_data
            # Reset the past key and value states
            current_length_data.zero_()
        else:
            (
                past_key_values,
                past_key_values_data,
                current_length_data,
            ) = initialize_past_key_values(self.base_model)
            self.past_key_values = past_key_values
            self.past_key_values_data = past_key_values_data
            self.current_length_data = current_length_data

        input_len = input_ids.shape[1]
        reset_tree_mode(self)
        tree_logits, logits, hidden_state, sample_token = initialize_tree(
            input_ids, self, tree_buffers["tree_attn_mask"], past_key_values, logits_processor
        )
        new_token = 0

        for idx in range(max_length):
            candidates, cart_candidates_prob, tree_candidates = generate_candidates(
                tree_logits,
                tree_buffers["tree_indices"],
                tree_buffers["retrieve_indices"],
                sample_token,
                logits_processor
            )
            logits, hidden_state_new, outputs = tree_decoding(
                self,
                tree_candidates,
                past_key_values,
                tree_buffers["tree_position_ids"],
                input_ids,
                tree_buffers["retrieve_indices"],
            )
            best_candidate, accept_length, sample_p = evaluate_posterior(
                logits, candidates, logits_processor, cart_candidates_prob
            )
            input_ids, tree_logits, new_token, hidden_state, sample_token = update_inference_inputs(
                input_ids,
                candidates,
                best_candidate,
                accept_length,
                tree_buffers["retrieve_indices"],
                logits_processor,
                logits,
                tree_logits,
                new_token,
                past_key_values_data,
                current_length_data,
                self,
                hidden_state,
                hidden_state_new,
                sample_p
            )


            if self.tokenizer.eos_token_id in input_ids[0, input_len:].tolist():
                return input_ids
            if new_token > max_new_tokens:
                return input_ids
            if input_ids.shape[1] > max_length:
                return input_ids

    @torch.no_grad()
    def ea_generate(
            self,
            input_ids,
            temperature=0.0,
            top_p=0.0,
            top_k=0.0,
            max_steps=512,
            tree_choices=mc_sim_7b_63,

    ):
        if temperature > 1e-5:
            logits_processor = prepare_logits_processor(temperature=temperature, top_p=top_p, top_k=top_k)
        else:
            logits_processor = None
        assert input_ids.shape[0] == 1, "Only support batch size 1 for now!!"
        # Avoid modifying the input_ids in-place
        input_ids = input_ids.clone()
        self.ea_layer.reset_kv()

        if hasattr(self, "tree_choices") and self.tree_choices == tree_choices:
            tree_buffers = self.tree_buffers
        else:
            tree_buffers = generate_tree_buffers(
                tree_choices, device=self.base_model.model.layers[-1].self_attn.q_proj.weight.device
            )
        self.tree_buffers = tree_buffers
        self.tree_choices = tree_choices

        # Initialize the past key and value states
        if hasattr(self, "past_key_values"):
            past_key_values = self.past_key_values
            past_key_values_data = self.past_key_values_data
            current_length_data = self.current_length_data
            # Reset the past key and value states
            current_length_data.zero_()
        else:
            (
                past_key_values,
                past_key_values_data,
                current_length_data,
            ) = initialize_past_key_values(self.base_model)
            self.past_key_values = past_key_values
            self.past_key_values_data = past_key_values_data
            self.current_length_data = current_length_data

        input_len = input_ids.shape[1]
        reset_tree_mode(self)
        tree_logits, logits, hidden_state, sample_token = initialize_tree(
            input_ids, self, tree_buffers["tree_attn_mask"], past_key_values, logits_processor
        )
        new_token = 0

        for idx in range(max_steps):
            candidates, cart_candidates_prob, tree_candidates = generate_candidates(
                tree_logits,
                tree_buffers["tree_indices"],
                tree_buffers["retrieve_indices"],
                sample_token,
                logits_processor
            )
            logits, hidden_state_new, outputs = tree_decoding(
                self,
                tree_candidates,
                past_key_values,
                tree_buffers["tree_position_ids"],
                input_ids,
                tree_buffers["retrieve_indices"],
            )
            best_candidate, accept_length, sample_p = evaluate_posterior(
                logits, candidates, logits_processor, cart_candidates_prob
            )
            input_ids, tree_logits, new_token, hidden_state, sample_token = update_inference_inputs(
                input_ids,
                candidates,
                best_candidate,
                accept_length,
                tree_buffers["retrieve_indices"],
                logits_processor,
                logits,
                tree_logits,
                new_token,
                past_key_values_data,
                current_length_data,
                self,
                hidden_state,
                hidden_state_new,
                sample_p
            )

            yield input_ids

            if self.tokenizer.eos_token_id in input_ids[0, input_len:].tolist():
                break
            if new_token > 1024:
                break
            if input_ids.shape[1] > 1960:
                break

    @torch.no_grad()
    def naive_generate(
            self,
            input_ids,
            temperature=0.0,
            top_p=0.0,
            top_k=0.0,
            max_steps=512,
            tree_choices=mc_sim_7b_63,

    ):
        if temperature > 1e-5:
            logits_processor = prepare_logits_processor(temperature=temperature, top_p=top_p, top_k=top_k)
        else:
            logits_processor = None
        assert input_ids.shape[0] == 1, "Only support batch size 1 for now!!"
        # Avoid modifying the input_ids in-place
        input_ids = input_ids.clone()
        self.ea_layer.reset_kv()

        if hasattr(self, "tree_choices") and self.tree_choices == tree_choices:
            tree_buffers = self.tree_buffers
        else:
            tree_buffers = generate_tree_buffers(
                tree_choices, device=self.base_model.model.layers[-1].self_attn.q_proj.weight.device
            )
        self.tree_buffers = tree_buffers
        self.tree_choices = tree_choices

        # Initialize the past key and value states
        if hasattr(self, "past_key_values"):
            past_key_values = self.past_key_values
            past_key_values_data = self.past_key_values_data
            current_length_data = self.current_length_data
            # Reset the past key and value states
            current_length_data.zero_()
        else:
            (
                past_key_values,
                past_key_values_data,
                current_length_data,
            ) = initialize_past_key_values(self.base_model)
            self.past_key_values = past_key_values
            self.past_key_values_data = past_key_values_data
            self.current_length_data = current_length_data

        input_len = input_ids.shape[1]
        reset_tree_mode(self)
        outputs = self.base_model(input_ids, past_key_values=past_key_values, use_cache=True)
        new_token = 0

        for idx in range(max_steps):
            input_id = outputs.logits[:, -1:].argmax(dim=-1)
            outputs = self.base_model(input_id, use_cache=True, past_key_values=past_key_values)
            input_ids = torch.cat([input_ids, input_id], dim=-1)

            yield input_ids

            if self.tokenizer.eos_token_id in input_ids[0, input_len:].tolist():
                break
            if new_token > 1024:
                break
            if input_ids.shape[1] > 1960:
                break