import gradio as gr import os import glob import cv2 import numpy as np import torch from molscribe import MolScribe from indigo import Indigo from indigo.renderer import IndigoRenderer from huggingface_hub import hf_hub_download REPO_ID = "yujieq/MolScribe" FILENAME = "swin_base_char_aux_1m.pth" ckpt_path = hf_hub_download(REPO_ID, FILENAME) device = torch.device('cpu') model = MolScribe(ckpt_path, device) def generate_mol_image(molblock): indigo = Indigo() render = IndigoRenderer(indigo) indigo.setOption('render-output-format', 'png') indigo.setOption('render-background-color', '1,1,1') indigo.setOption('render-stereo-style', 'none') indigo.setOption('render-label-mode', 'hetero') mol = indigo.loadMolecule(molblock) buf = render.renderToBuffer(mol) img = cv2.imdecode(np.asarray(bytearray(buf), dtype=np.uint8), 1) return img def predict(image): smiles, molblock = model.predict_image(image) image = generate_mol_image(molblock) return image, smiles, molblock iface = gr.Interface( predict, inputs=gr.Image(label="Upload molecular image", show_label=False).style(height=256), outputs=[ gr.Image(label="Prediction").style(height=256), gr.Textbox(label="SMILES"), gr.Textbox(label="Molfile"), ], allow_flagging="auto", title="MolScribe", description="Convert a molecular image into SMILES and Molfile. (To view the prediction better, copy-paste the Molfile to ChemDraw.)
" \ "Paper: [_MolScribe: Robust Molecular Structure Recognition with Image-To-Graph Generation_](https://arxiv.org/abs/2205.14311)
" \ "Code: https://github.com/thomas0809/MolScribe
" \ "Authors: [Yujie Qian](mailto:yujieq@csail.mit.edu), Jiang Guo, Zhengkai Tu, Zhening Li, Connor W. Coley, Regina Barzilay. _MIT CSAIL_.", examples=sorted(glob.glob('examples/*.png')), examples_per_page=20, ) iface.launch()