File size: 1,952 Bytes
bd8cfdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import gradio as gr

import os
import glob
import cv2
import numpy as np
import torch
from rxnscribe import RxnScribe

from huggingface_hub import hf_hub_download

REPO_ID = "yujieq/RxnScribe"
FILENAME = "pix2seq_reaction_full.ckpt"
ckpt_path = hf_hub_download(REPO_ID, FILENAME)

device = torch.device('cpu')
model = RxnScribe(ckpt_path, device)


def get_markdown(reaction):
    output = []
    for x in ['reactants', 'conditions', 'products']:
        s = ''
        for ent in reaction[x]:
            if 'smiles' in ent:
                s += ent['smiles'] + '<br>'
            elif 'text' in ent:
                s += ' '.join(ent['text']) + '<br>'
            else:
                s += ent['category']
        output.append(s)
    return output


def predict(image, molscribe, ocr):
    predictions = model.predict_image(image, molscribe=molscribe, ocr=ocr)
    pred_images = model.draw_predictions(predictions, image=image)
    markdown = [[i] + get_markdown(reaction) for i, reaction in enumerate(predictions)]
    return pred_images, markdown


with gr.Blocks() as demo:
    with gr.Column():
        with gr.Row():
            image = gr.Image(label="Upload reaction diagram", show_label=False, type='pil').style(height=256)
        with gr.Row():
            molscribe = gr.Checkbox(label="Run MolScribe to recognize molecule structures")
            ocr = gr.Checkbox(label="Run OCR to recognize text")
            btn = gr.Button("Submit").style(full_width=False)
        with gr.Row():
            gallery = gr.Gallery(
                label="Predicted reactions", show_label=False, elem_id="gallery"
            ).style(height="auto")
            markdown = gr.Dataframe(
                headers=['#', 'reactant', 'condition', 'product'],
                datatype=['number'] + ['markdown'] * 3,
                wrap=False
            )

    btn.click(predict, inputs=[image, molscribe, ocr], outputs=[gallery, markdown])

demo.launch()