|
import gradio as gr |
|
|
|
import os |
|
import glob |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from rxnscribe import RxnScribe |
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
REPO_ID = "yujieq/RxnScribe" |
|
FILENAME = "pix2seq_reaction_full.ckpt" |
|
ckpt_path = hf_hub_download(REPO_ID, FILENAME) |
|
|
|
device = torch.device('cpu') |
|
model = RxnScribe(ckpt_path, device) |
|
|
|
|
|
def get_markdown(reaction): |
|
output = [] |
|
for x in ['reactants', 'conditions', 'products']: |
|
s = '' |
|
for ent in reaction[x]: |
|
if 'smiles' in ent: |
|
s += ent['smiles'] + '<br>' |
|
elif 'text' in ent: |
|
s += ' '.join(ent['text']) + '<br>' |
|
else: |
|
s += ent['category'] |
|
output.append(s) |
|
return output |
|
|
|
|
|
def predict(image, molscribe, ocr): |
|
predictions = model.predict_image(image, molscribe=molscribe, ocr=ocr) |
|
pred_images = model.draw_predictions(predictions, image=image) |
|
markdown = [[i] + get_markdown(reaction) for i, reaction in enumerate(predictions)] |
|
return pred_images, markdown |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
with gr.Row(): |
|
image = gr.Image(label="Upload reaction diagram", show_label=False, type='pil').style(height=256) |
|
with gr.Row(): |
|
molscribe = gr.Checkbox(label="Run MolScribe to recognize molecule structures") |
|
ocr = gr.Checkbox(label="Run OCR to recognize text") |
|
btn = gr.Button("Submit").style(full_width=False) |
|
with gr.Row(): |
|
gallery = gr.Gallery( |
|
label="Predicted reactions", show_label=False, elem_id="gallery" |
|
).style(height="auto") |
|
markdown = gr.Dataframe( |
|
headers=['#', 'reactant', 'condition', 'product'], |
|
datatype=['number'] + ['markdown'] * 3, |
|
wrap=False |
|
) |
|
|
|
btn.click(predict, inputs=[image, molscribe, ocr], outputs=[gallery, markdown]) |
|
|
|
demo.launch() |
|
|