Spaces:
Runtime error
Runtime error
File size: 1,286 Bytes
9fb5dd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
import torch
import torchvision.transforms as transforms
from PIL import Image
import matplotlib.pyplot as plt
# Load the trained generator model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
generator_A2B = Generator().to(device)
generator_A2B.load_state_dict(torch.load("generator_A2B.pth", map_location=device))
generator_A2B.eval()
def transform_image(image):
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
return transform(image).unsqueeze(0).to(device)
def generate(image):
image = Image.open(image).convert("RGB")
input_tensor = transform_image(image)
with torch.no_grad():
output_tensor = generator_A2B(input_tensor)
output_image = (output_tensor.squeeze(0).permute(1, 2, 0).cpu().numpy() + 1) / 2
plt.imshow(output_image)
plt.axis("off")
plt.show()
return output_image
# Create Gradio Interface
demo = gr.Interface(
fn=generate,
inputs=gr.Image(type="filepath"),
outputs=gr.Image(),
title="CycleGAN Image Translation",
description="Upload an image and get the translated output from the CycleGAN model."
)
demo.launch()
|