# Install FlashAttention import subprocess subprocess.run( "pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True, ) import base64 from io import BytesIO import re from PIL import Image, ImageDraw import gradio as gr import spaces import torch from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info repo_id = "yuki-imajuku/Qwen2.5-VL-7B-Instruct-Manga109-FT-OCR-Page-VQA" processor = AutoProcessor.from_pretrained(repo_id) def pil2base64(image: Image.Image) -> str: buffered = BytesIO() image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode() @spaces.GPU @torch.inference_mode() def inference_fn( image: Image.Image | None, # progress=gr.Progress(track_tqdm=True), ) -> tuple[str, Image.Image | None]: if image is None: gr.Warning("Please upload an image!", duration=10) return "Please upload an image!", None device = "cuda" if torch.cuda.is_available() else "cpu" model = Qwen2_5_VLForConditionalGeneration.from_pretrained( repo_id, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map=device, ) base64_image = pil2base64(image) messages = [ {"role": "user", "content": [ {"type": "image", "image": f"data:image;base64,{base64_image}"}, {"type": "text", "text": "With this image, please output the result of OCR with grounding."} ]}, ] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to(model.device) generated_ids = model.generate(**inputs, max_new_tokens=1024) generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] raw_output = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=False, clean_up_tokenization_spaces=False, )[0] print(raw_output) result_image = image_inputs[0].copy() draw = ImageDraw.Draw(result_image) ocr_texts = [] for ocr_text, ocr_quad in re.findall(r"<\|object_ref_start\|>(.+?)<\|object_ref_end\|><\|quad_start\|>([\d,]+)<\|quad_end\|>", raw_output): ocr_texts.append(f"{ocr_text} -> {ocr_quad}") quad = [int(x) for x in ocr_quad.split(",")] for i in range(4): start_point = quad[i*2:i*2+2] end_point = quad[i*2+2:i*2+4] if i < 3 else quad[:2] draw.line(start_point + end_point, fill="red", width=4) ocr_texts_str = "\n".join(ocr_texts) return ocr_texts_str, result_image with gr.Blocks() as demo: gr.Markdown("# Manga Panel OCR") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", image_mode="RGB", type="pil") input_button = gr.Button(value="Submit") with gr.Column(): ocr_text = gr.Textbox(label="Result", lines=5) ocr_image = gr.Image(label="OCR Result", type="pil", show_label=False) input_button.click( fn=inference_fn, inputs=[input_image], outputs=[ocr_text, ocr_image], ) ocr_examples = gr.Examples( examples=[], fn=inference_fn, inputs=[input_image], outputs=[ocr_text, ocr_image], cache_examples=False, ) demo.queue().launch()