Spaces:
Build error
Build error
File size: 11,605 Bytes
daf0288 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import os
from abc import ABC
from pathlib import Path
from typing import Any, List, Literal, Mapping, Optional, Tuple, Union, Dict, Type, Sequence
import json
import logging
import torch
from doctr.models.preprocessor import PreProcessor
from doctr.models.detection.predictor import DetectionPredictor # pylint: disable=W0611
from doctr.models.detection.zoo import detection_predictor,detection
import numpy.typing as npt
import numpy as np
from numpy import uint8
ImageType = npt.NDArray[uint8]
from utils import Annotation,getlogger,group_words_into_lines
ARCHS = [
"db_resnet34",
"db_resnet50",
"db_mobilenet_v3_large",
"linknet_resnet18",
"linknet_resnet34",
"linknet_resnet50",
"fast_tiny",
"fast_small",
"fast_base",
]
class Wordboxes:
def __init__(self,score, box):
self.box = box
self.score = score
class DoctrWordDetector():
"""
A deepdoctection wrapper of DocTr text line detector. We model text line detection as ObjectDetector
and assume to use this detector in a ImageLayoutService.
DocTr supports several text line detection implementations but provides only a subset of pre-trained models.
The most usable one for document OCR for which a pre-trained model exists is DBNet as described in “Real-time Scene
Text Detection with Differentiable Binarization”, with a ResNet-50 backbone. This model can be used in either
Tensorflow or PyTorch.
Some other pre-trained models exist that have not been registered in `ModelCatalog`. Please check the DocTr library
and organize the download of the pre-trained model by yourself.
**Example:**
path_weights_tl = ModelDownloadManager.maybe_download_weights_and_configs("doctr/db_resnet50/pt
/db_resnet50-ac60cadc.pt")
# Use "doctr/db_resnet50/tf/db_resnet50-adcafc63.zip" for Tensorflow
categories = ModelCatalog.get_profile("doctr/db_resnet50/pt/db_resnet50-ac60cadc.pt").categories
det = DoctrTextlineDetector("db_resnet50",path_weights_tl,categories,"cpu")
layout = ImageLayoutService(det,to_image=True, crop_image=True)
path_weights_tr = dd.ModelDownloadManager.maybe_download_weights_and_configs("doctr/crnn_vgg16_bn
/pt/crnn_vgg16_bn-9762b0b0.pt")
rec = DoctrTextRecognizer("crnn_vgg16_bn", path_weights_tr, "cpu")
text = TextExtractionService(rec, extract_from_roi="word")
analyzer = DoctectionPipe(pipeline_component_list=[layout,text])
path = "/path/to/image_dir"
df = analyzer.analyze(path = path)
for dp in df:
...
"""
def __init__(
self,
architecture: str,
path_weights: str,
path_config_json:str
) -> None:
"""
:param architecture: DocTR supports various text line detection models, e.g. "db_resnet50",
"db_mobilenet_v3_large". The full list can be found here:
https://github.com/mindee/doctr/blob/main/doctr/models/detection/zoo.py#L20
:param path_weights: Path to the weights of the model
:param categories: A dict with the model output label and value
:param device: "cpu" or "cuda" or any tf.device or torch.device. The device must be compatible with the dll
:param lib: "TF" or "PT" or None. If None, env variables USE_TENSORFLOW, USE_PYTORCH will be used.
"""
self.architecture = architecture
self.path_weights = path_weights
self.path_config_json =path_config_json
# Ensure the correct device is chosen (either CPU or CUDA if available)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize the model with the given architecture and path to weights
self.doctr_predictor = self.get_wrapped_model()
"""
Two static method so that they can be called without creating an instance of the class
Also, they don't require any instance specific data
"""
def get_wrapped_model(
self
) -> Any:
"""
Get the inner (wrapped) model.
:param architecture: DocTR supports various text line detection models, e.g. "db_resnet50",
"db_mobilenet_v3_large". The full list can be found here:
https://github.com/mindee/doctr/blob/main/doctr/models/detection/zoo.py#L20
:param path_weights: Path to the weights of the model
:return: Inner model which is a "nn.Module" in PyTorch or a "tf.keras.Model" in Tensorflow
"""
"""
(function) detection_predictor: ((arch: Any = "db_resnet50", pretrained: bool = False, assume_straight_pages: bool = True, **kwargs: Any) -> DetectionPredictor)
"""
#doctr_predictor = detection_predictor(arch=architecture, pretrained=False, pretrained_backbone=False)
#doctr_predictor = detection_predictor(arch=architecture, pretrained=False)
doctr_predictor = self.build_model(self.architecture, self.path_config_json)
self.load_model(self.path_weights, doctr_predictor, self.device)
return doctr_predictor
@staticmethod
def build_model(arch: str, pretrained = False,assume_straight_pages=True, path_config_json: Optional[str] = None) -> "DetectionPredictor":
"""Building the model
1. Specific keys (arch, url, task) are removed from custom_configs.
mean and std values are moved to recognition_configs.
2. Creating model
Check Architecture Type:
Case 1 :
If architecture is a string, it checks if it's in the predefined set of architectures (ARCHS).
If valid, it creates an instance of the model using the specified architecture and custom configurations.
Handle Custom Architecture Instances:
Case 2 :
If architecture is not a string, it checks if it's an **instance** of one of the recognized model classes (e.g., recognition.CRNN, recognition.SAR, etc.).
If valid, it assigns the provided architecture to model.
Get Input Shape and Create RecognitionPredictor:
3. Retrieves the input_shape from the model's configuration.
4. Returns an instance of RecognitionPredictor initialized with a PreProcessor and the model.
"""
custom_configs = {}
batch_size = 4
detection_configs = {}
if path_config_json:
with open(path_config_json, "r", encoding="utf-8") as f:
custom_configs = json.load(f)
custom_configs.pop("arch", None)
custom_configs.pop("url", None)
custom_configs.pop("task", None)
detection_configs["mean"] = custom_configs.pop("mean")
detection_configs["std"] = custom_configs.pop("std")
#batch_size = custom_configs.pop("batch_size")
detection_configs["batch_size"] = batch_size
if isinstance(arch, str):
if arch not in ARCHS:
raise ValueError(f"unknown architecture '{arch}'")
model = detection.__dict__[arch](
pretrained=pretrained,
assume_straight_pages=assume_straight_pages
)
else:
if not isinstance(arch, (detection.DBNet, detection.LinkNet, detection.FAST)):
raise ValueError(f"unknown architecture: {type(arch)}")
model = arch
model.assume_straight_pages = assume_straight_pages
input_shape = model.cfg["input_shape"][-2:]
predictor = DetectionPredictor(
PreProcessor(input_shape, batch_size=batch_size,**detection_configs),
model
)
return predictor
@staticmethod
def load_model(path_weights: str, doctr_predictor: Any, device: torch.device) -> None:
"""Loading model weights
1. Load the State Dictionary:
state_dict = torch.load(path_weights, map_location=device) loads the state dictionary from the specified file path and maps it to the specified device.
2. Modify Keys in the State Dictionary:
The code prepends "model." to each key in the state dictionary. This is likely necessary to match the keys expected by the doctr_predictor model.
3. Load State Dictionary into Model:
doctr_predictor.load_state_dict(state_dict) loads the modified state dictionary into the model.
4. Move Model to Device:
doctr_predictor.to(device) moves the model to the specified device.
"""
state_dict = torch.load(path_weights, map_location=device)
for key in list(state_dict.keys()):
state_dict["model." + key] = state_dict.pop(key)
doctr_predictor.load_state_dict(state_dict)
doctr_predictor.to(device)
def predict(self, np_img: ImageType,sort_vertical = False) -> List[Wordboxes]:
"""
Prediction per image.
:param np_img: image as numpy array
:return: A list of DetectionResult
"""
raw_output =self.doctr_predictor([np_img])
height, width = np_img.shape[:2]
"""
raw_output is arrary of dictionary with just one key "words"
1-4th element : coordinates You take first 4 elements in this array by doing box[:4]
5th element - score
But those are 4 point and we need 4X2
type(raw_output[0]["words"]) are numpy arrary
Okay hypothesis :xmin, ymin, xmax, ymax
Points should be ordered in this order :left_lower, right_lower, right_upper, left_upper
"""
logger = getlogger("array")
# Check if the logger has any handlers
if (logger.hasHandlers()):
logger.handlers.clear()
# Create a handler
handler = logging.StreamHandler()
# Create a formatter and add it to the handler
formatter = logging.Formatter('%(levelname)s:%(message)s')
handler.setFormatter(formatter)
# Add the handler to the logger
logger.addHandler(handler)
#logger.info(raw_output[0]["words"])
#array is numpy array of shape (n,5) where n is number of words and 5 is size of each element(array) with coordinate(xmin,ymin,xmax,ymax) + score
array = raw_output[0]["words"]
if not sort_vertical:
#Only When input has one line
sorted_array = array[array[:, 0].argsort()]
else:
#When input can have multiple lines
sorted_array = group_words_into_lines(array)
#logger.info(sorted_array)
detection_results = []
for box in sorted_array:
xmin, ymin, xmax, ymax = box[:4]
xmin = xmin*width
ymin = ymin*height
xmax = xmax*width
ymax = ymax*height
newb = np.array([
[xmin, ymin],
[xmax, ymin],
[xmax, ymax],
[xmin, ymax]
], dtype=np.float32)
assert newb.shape == (4, 2), f"Points array must be of shape (4, 2), but got {box.shape}"
assert newb.dtype == np.float32, f"Points array must be of dtype float32, but got {box.dtype}"
w = Wordboxes(
score=box[4],
box = newb
)
detection_results.append(w)
return detection_results
|