File size: 13,015 Bytes
daf0288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from typing import Tuple, List, Sequence, Optional, Union
from torchvision import transforms
from torch import nn, Tensor
from PIL import Image
from pathlib import Path
from bs4 import BeautifulSoup as bs
from unitable import UnitablePredictor
from doctrfiles import DoctrWordDetector,DoctrTextRecognizer
import numpy as np
from utils import crop_an_Image,cropImageExtraMargin
from utils import denoisingAndSharpening
import numpy.typing as npt
from numpy import uint8


ImageType = npt.NDArray[uint8]

html_table_template = (

    lambda table: f"""<html>
        <head> <meta charset="UTF-8">
        <style>
        table, th, td {{
            border: 1px solid black;
            font-size: 10px;
        }}
        </style> </head>
        <body>
        <table frame="hsides" rules="groups" width="100%%">
            {table}
        </table> </body> </html>"""
)

class OcrTable1():
    def __init__(self,englishFlag = True):
        self.wordDetector = DoctrWordDetector(architecture="db_resnet50", 
                                              path_weights="./doctrfiles/models/db_resnet50-79bd7d70.pt",
                                              path_config_json ="./doctrfiles/models/db_resnet50_config.json")
        
        self.unitablePredictor = UnitablePredictor()

        if englishFlag:
            self.textRecognizer = DoctrTextRecognizer(architecture="master", path_weights="./doctrfiles/models/master-fde31e4a.pt", 
                                            path_config_json="./doctrfiles/models/master.json")
        else:
            self.textRecognizer = DoctrTextRecognizer(architecture="parseq", path_weights="./doctrfiles/models/doctr-multilingual-parseq.bin", 
                                           path_config_json="./doctrfiles/models/multilingual-parseq-config.json")
        

    @staticmethod
    def build_table_from_html_and_cell(
        structure: List[str], content: List[str] = None
    ) -> List[str]:
        """Build table from html and cell token list"""
        assert structure is not None
        html_code = list()

        # deal with empty table
        if content is None:
            content = ["placeholder"] * len(structure)

        for tag in structure:
            if tag in ("<td>[]</td>", ">[]</td>"):
                if len(content) == 0:
                    continue
                cell = content.pop(0)
                html_code.append(tag.replace("[]", cell))
            else:
                html_code.append(tag)

        return html_code
    
    @staticmethod
    def save_detection(detected_lines_images:List[ImageType],prefix = './res/test1/res_'):
        i = 0
        for img in detected_lines_images:
            pilimg = Image.fromarray(img)
            pilimg.save(prefix+str(i)+'.png')
            i=i+1

    
    def predict(self,images:List[ImageType],debug_folder="./res",denoise=False):
        
        """
        this hardcodes 0 into images and bbxs cause they are made to get multiple images but this component will only get one image 
        """

        # Step 0 : Locate the table using Table detection TODO
        # PreProcessing 
        if denoise: 
            images = denoisingAndSharpening(images)
        else: 
            images = images

        pred_htmls, bbxs = self.unitablePredictor.predict(images,debug_folder)

        #pred_html =['<thead>', '<tr>', '<td', '  ', 'colspan="8"', '>[]</td>', '</tr>', '<tr>', '<td', '  ', 'colspan="8"', '>[]</td>', '</tr>', '<tr>', '<td></td>', '<td', '  ', 'colspan="2"', '>[]</td>', '<td', '  ', 'colspan="2"', '>[]</td>', '<td', '  ', 'colspan="2"', '>[]</td>', '</tr>', '<tr>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '</tr>', '</thead>', '<tbody>', '<tr>', '<td></td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '</tr>', '<tr>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '</tr>', '<tr>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '</tr>', '<tr>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '</tr>', '<tr>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '</tr>', '<tr>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '</tr>', '<tr>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '</tr>', '<tr>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '</tr>', '<tr>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '</tr>', '<tr>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '</tr>', '<tr>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '</tr>', '<tr>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '</tr>', '<tr>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '</tr>', '<tr>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '</tr>', '<tr>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '</tr>', '<tr>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '</tr>', '<tr>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '<td>[]</td>', '</tr>', '</tbody>']
        #bbxs = [[608, 33, 820, 106], [72, 125, 1353, 212], [377, 255, 654, 340], [709, 255, 989, 340], [1044, 255, 1330, 340], [166, 364, 254, 394], [351, 451, 517, 484], [520, 424, 676, 538], [689, 451, 839, 484], [859, 424, 1011, 538], [1024, 424, 1181, 511], [1194, 424, 1353, 538], [420, 614, 446, 644], [592, 614, 615, 644], [761, 614, 784, 644], [930, 614, 953, 644], [1096, 614, 1119, 644], [1262, 614, 1285, 644], [72, 671, 185, 701], [315, 671, 351, 701], [394, 671, 462, 701], [595, 671, 631, 701], [728, 671, 797, 701], [930, 671, 966, 701], [1063, 671, 1132, 701], [1268, 671, 1304, 701], [72, 698, 205, 728], [315, 698, 351, 728], [416, 698, 462, 728], [589, 698, 631, 728], [748, 698, 790, 728], [924, 698, 966, 728], [1089, 698, 1132, 728], [1259, 698, 1304, 728], [72, 725, 208, 755], [315, 725, 351, 755], [416, 725, 462, 755], [595, 725, 631, 755], [751, 725, 797, 755], [930, 725, 966, 755], [1063, 725, 1135, 755], [1268, 725, 1304, 755], [72, 752, 211, 782], [315, 752, 351, 782], [416, 752, 462, 782], [595, 752, 631, 782], [764, 752, 797, 782], [946, 752, 966, 782], [1089, 752, 1132, 782], [1268, 752, 1304, 782], [72, 780, 179, 810], [315, 780, 351, 810], [416, 780, 462, 810], [595, 780, 631, 810], [764, 780, 797, 810], [946, 780, 966, 810], [1089, 780, 1132, 810], [1268, 780, 1304, 810], [72, 807, 182, 837], [315, 807, 351, 837], [416, 807, 462, 837], [595, 807, 631, 837], [751, 807, 797, 837], [946, 807, 966, 837], [1089, 807, 1132, 837], [1268, 807, 1304, 837], [72, 834, 169, 864], [315, 834, 351, 864], [416, 834, 462, 864], [595, 834, 631, 864], [764, 834, 797, 864], [946, 834, 966, 864], [1089, 834, 1132, 864], [1268, 834, 1304, 864], [72, 861, 189, 891], [315, 861, 351, 891], [416, 861, 462, 891], [595, 861, 631, 891], [764, 861, 797, 891], [946, 861, 966, 891], [1089, 861, 1132, 891], [1268, 861, 1304, 891], [72, 888, 189, 918], [315, 888, 351, 918], [416, 888, 462, 918], [595, 888, 631, 918], [751, 888, 797, 918], [946, 888, 966, 918], [1089, 888, 1132, 918], [1268, 888, 1304, 918], [72, 915, 179, 945], [315, 915, 351, 945], [416, 915, 462, 945], [595, 915, 631, 945], [764, 915, 797, 945], [946, 915, 966, 945], [1089, 915, 1132, 945], [1268, 915, 1304, 945], [72, 943, 241, 973], [315, 943, 351, 973], [416, 943, 462, 973], [595, 943, 631, 973], [764, 943, 797, 973], [946, 943, 966, 973], [1089, 943, 1132, 973], [1268, 943, 1304, 973], [72, 970, 231, 1000], [315, 970, 351, 1000], [394, 970, 462, 1000], [595, 970, 631, 1000], [751, 970, 797, 1000], [930, 970, 966, 1000], [1063, 970, 1132, 1000], [1268, 970, 1304, 1000], [72, 997, 211, 1027], [315, 997, 351, 1027], [416, 997, 462, 1027], [595, 997, 631, 1027], [764, 997, 797, 1027], [946, 997, 966, 1027], [1089, 997, 1132, 1027], [1268, 997, 1304, 1027], [72, 1024, 198, 1054], [315, 1024, 351, 1054], [394, 1024, 462, 1054], [595, 1024, 631, 1054], [764, 1024, 797, 1054], [946, 1024, 966, 1054], [1063, 1024, 1132, 1054], [1268, 1024, 1304, 1054], [72, 1051, 231, 1081], [315, 1051, 351, 1081], [394, 1051, 462, 1081], [595, 1051, 631, 1081], [764, 1051, 797, 1081], [946, 1051, 966, 1081], [1063, 1051, 1132, 1081], [1268, 1051, 1304, 1081], [124, 1108, 195, 1138], [315, 1108, 351, 1138], [381, 1108, 462, 1138], [595, 1108, 631, 1138], [728, 1108, 797, 1138], [946, 1108, 966, 1138], [1054, 1108, 1135, 1138], [1268, 1108, 1304, 1138]]

        #Step2: Crop the images from the returned bboxes 
        pred_cell = []
        cell_imgs_to_viz = []
        cell_img_num=0

        # Some tabless have a lot of words in their header 
        # So for the headers, give doctr word ddetector doesn't work when the images aren't square 
        table_header_cells = 0
        header_exists = False
        for cell in pred_html:
            if cell=='>[]</td>' or cell == '<td>[]</td>':
                table_header_cells += 1
            if cell =='</thead>':
                header_exists = True
                break
        if not header_exists:
            table_header_cells = 0
        pred_cell = []
        cell_imgs_to_viz = []
        cell_img_num=0
        
        one_line_height = 100000
        for i in range(table_header_cells):
            box = bbxs[0][i]
            xmin, ymin, xmax, ymax = box
            current_box_height = abs(ymax-ymin) 
            if current_box_height<one_line_height:
                one_line_height = current_box_height

        for box in bbxs[0]:
            xmin, ymin, xmax, ymax = box
            fourbytwo = np.array([
                    [xmin, ymin],
                    [xmax, ymin],
                    [xmax, ymax],
                    [xmin, ymax]
                ], dtype=np.float32)
            current_box_height = abs(ymax-ymin) 
            

            #THOSE ARE FOR THE Header cells THAT HAS A LOT OF WORDS 
            if table_header_cells > 0 and current_box_height>one_line_height+5:

                cell_img = cropImageExtraMargin([fourbytwo],images[0])[0]
                table_header_cells -= 1

                #List of 4 x 2 
                detection_results = self.wordDetector.predict(cell_img,sort_vertical=True)

                input_to_recog = []
                if detection_results == []:
                    input_to_recog.append(cell_img)
                else: 
                    #print("Debugging the issue")
                    for wordbox in detection_results:
                        #print(wordbox.box)
                        #print(cell_img.shape)
                        cropped_image= crop_an_Image(wordbox.box,cell_img)
                        #print(cropped_image.shape)
                        if cropped_image.shape[0] >0 and cropped_image.shape[1]>0:
                            input_to_recog.append(cropped_image)
                        else: 
                            print("Empty image")

            else:# For normal cells don't do word detection! 
                cell_img = crop_an_Image(fourbytwo,images[0])
                if table_header_cells>0:
                    table_header_cells -= 1
                if cell_img.shape[0] >0 and cell_img.shape[1]>0:
                    input_to_recog =[cell_img]


            cell_imgs_to_viz.append(cell_img)
            cell_img_num = cell_img_num+1


            if input_to_recog != []:
                words = self.textRecognizer.predict_for_tables(input_to_recog)
                cell_output = " ".join(words)
                pred_cell.append(cell_output)
            else:
                #Don't lose empty cell 
                pred_cell.append("")


        self.save_detection(cell_imgs_to_viz,prefix = './res/test1/cell_imgs_')
        
       
        print(pred_cell)
        #Step3 : 
        pred_html = pred_htmls[0]
        pred_code = self.build_table_from_html_and_cell(pred_html, pred_cell)
        print(pred_code)
        pred_code = "".join(pred_code)
        pred_code = html_table_template(pred_code)

        # Display the HTML table
        soup = bs(pred_code)
        #formatted and indented) string representation of the HTML document
        table_code = soup.prettify()
        print(table_code)
        return table_code