File size: 13,853 Bytes
daf0288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
##################################################
#                 Configurations                 #
##################################################

#
# Datasets
#

# label type
LABEL_IMAGE = ++trainer.label_type="image"
LABEL_HTML = ++trainer.label_type="html" "++trainer.train.loss_weights.html=1"
LABEL_CELL = ++trainer.label_type="cell" "++trainer.train.loss_weights.cell=1"
LABEL_BBOX = ++trainer.label_type="bbox" "++trainer.train.loss_weights.bbox=1"
MEAN = [0.86597056,0.88463002,0.87491087]
STD = [0.20686628,0.18201602,0.18485524]

# augmentation
AUG_VQVAE = dataset/augmentation=vqvae
AUG_BEIT = dataset/augmentation=beit \
	++dataset.augmentation.mean=$(MEAN) ++dataset.augmentation.std=$(STD)
AUG_RESIZE_NORM = dataset/augmentation=resize_normalize \
	++dataset.augmentation.transforms.2.mean=$(MEAN) ++dataset.augmentation.transforms.2.std=$(STD)

# single dataset
DATA_SINGLE = dataset=single_dataset
PUBTABNET = $(DATA_SINGLE) \
	+dataset/[email protected]_dataset=train_dataset \
	+dataset/[email protected]_dataset=valid_dataset \
	+dataset/[email protected]_dataset=test_dataset
MINIPUBTABNET = $(DATA_SINGLE) \
	+dataset/[email protected]_dataset=train_dataset \
	+dataset/[email protected]_dataset=valid_dataset \
	+dataset/[email protected]_dataset=test_dataset

# multiple datasets
DATA_MULTI = dataset=concat_dataset
PUBTABNET_M = +dataset/[email protected]=train_dataset \
	+dataset/[email protected]=valid_dataset \
	+dataset/[email protected]=test_dataset
SYN_MARKET_M = +dataset/[email protected]=train_dataset \
	+dataset/[email protected]=valid_dataset \
	+dataset/[email protected]=test_dataset
SYN_FIN_M = +dataset/[email protected]=train_dataset \
	+dataset/[email protected]=valid_dataset \
	+dataset/[email protected]=test_dataset
SYN_SPARSE_M = +dataset/[email protected]=train_dataset \
	+dataset/[email protected]=valid_dataset \
	+dataset/[email protected]=test_dataset
SYN_PUB_M = +dataset/[email protected]=train_dataset \
	+dataset/[email protected]=valid_dataset \
	+dataset/[email protected]=test_dataset
PUBTABLES_M = +dataset/[email protected]=train_dataset \
	+dataset/[email protected]=valid_dataset \
	+dataset/[email protected]=test_dataset
TABLEBANK_M = +dataset/[email protected]=train_dataset \
	+dataset/[email protected]=valid_dataset \
	+dataset/[email protected]=test_dataset
FINTABNET_M = +dataset/[email protected]=train_dataset \
	+dataset/[email protected]=valid_dataset \
	+dataset/[email protected]=test_dataset

DATA_VQVAE_1M = $(DATA_MULTI) \
	$(PUBTABNET_M) $(SYN_MARKET_M) $(SYN_FIN_M) $(SYN_SPARSE_M)
DATA_VQVAE_2M = $(DATA_MULTI) \
	$(PUBTABNET_M) $(SYN_MARKET_M) $(SYN_FIN_M) $(SYN_SPARSE_M) $(SYN_PUB_M) \
	$(PUBTABLES_M) $(TABLEBANK_M)

PUBTABLES1M = $(DATA_MULTI) $(PUBTABLES_M)
FINTABNET = $(DATA_MULTI) $(FINTABNET_M)

PUB_SYN = $(DATA_MULTI) \
	$(PUBTABNET_M) $(SYN_MARKET_M) $(SYN_FIN_M) $(SYN_SPARSE_M) $(SYN_PUB_M)

PUB_SYN_FIN = $(DATA_MULTI) $(PUBTABNET_M) $(FINTABNET_M) \
	$(SYN_MARKET_M) $(SYN_FIN_M) $(SYN_SPARSE_M) $(SYN_PUB_M)

PUB_SYN_PUB1M = $(DATA_MULTI) $(PUBTABNET_M) $(PUBTABLES_M) \
	$(SYN_MARKET_M) $(SYN_FIN_M) $(SYN_SPARSE_M) $(SYN_PUB_M)

SYN = $(DATA_MULTI) $(SYN_MARKET_M) $(SYN_FIN_M) $(SYN_SPARSE_M) $(SYN_PUB_M)

SYN_fin = $(DATA_MULTI) $(SYN_FIN_M)
SYN_market = $(DATA_MULTI) $(SYN_MARKET_M)
SYN_pub = $(DATA_MULTI) $(SYN_PUB_M)
SYN_sparse = $(DATA_MULTI) $(SYN_SPARSE_M)

#
# Vocab
#
VOCAB_NONE = vocab=empty
VOCAB_HTML = vocab=html
VOCAB_BBOX = vocab=bbox
VOCAB_CELL = vocab=cell


#
# Trainer
#

# trainer type
TRAINER_VQVAE = trainer=vqvae
TRAINER_BEIT = trainer=beit
TRAINER_TABLE = trainer=table

# input image size
I224 = ++trainer.img_size=[224,224]
I448 = ++trainer.img_size=[448,448]
I112_448 = ++trainer.img_size=[112,448]

# max sequence length
SEQ200 = trainer.max_seq_len=200
SEQ512 = trainer.max_seq_len=512
SEQ1024 = trainer.max_seq_len=1024

# batch size + epoch
BATCH24 = ++trainer.train.dataloader.batch_size=24 ++trainer.valid.dataloader.batch_size=24
BATCH48 = ++trainer.train.dataloader.batch_size=48 ++trainer.valid.dataloader.batch_size=48
BATCH72 = ++trainer.train.dataloader.batch_size=72 ++trainer.valid.dataloader.batch_size=72
BATCH80 = ++trainer.train.dataloader.batch_size=80 ++trainer.valid.dataloader.batch_size=80
BATCH96 = ++trainer.train.dataloader.batch_size=96 ++trainer.valid.dataloader.batch_size=96
BATCH256 = ++trainer.train.dataloader.batch_size=256 ++trainer.valid.dataloader.batch_size=256
BATCH384 = ++trainer.train.dataloader.batch_size=384 ++trainer.valid.dataloader.batch_size=384

EPOCH24 = ++trainer.train.epochs=24
EPOCH30 = ++trainer.train.epochs=30
EPOCH48 = ++trainer.train.epochs=48

# optimizer
OPT_ADAMW = trainer/train/optimizer=adamw
OPT_WD5e2 = ++trainer.train.optimizer.weight_decay=5e-2

# lr + scheduler
LR_5e4 = ++trainer.train.optimizer.lr=5e-4
LR_3e4 = ++trainer.train.optimizer.lr=3e-4
LR_1e4 = ++trainer.train.optimizer.lr=1e-4
LR_8e5 = ++trainer.train.optimizer.lr=8e-5

LR_cosine = trainer/train/lr_scheduler=cosine ++trainer.train.lr_scheduler.lr_lambda.min_ratio=5e-3
LR_cosine93k_warm6k = $(LR_cosine) ++trainer.train.lr_scheduler.lr_lambda.total_step=93400 ++trainer.train.lr_scheduler.lr_lambda.warmup=5800
LR_cosine77k_warm8k = $(LR_cosine) ++trainer.train.lr_scheduler.lr_lambda.total_step=76600 ++trainer.train.lr_scheduler.lr_lambda.warmup=7660
LR_cosine30k_warm4k = $(LR_cosine) ++trainer.train.lr_scheduler.lr_lambda.total_step=30500 ++trainer.train.lr_scheduler.lr_lambda.warmup=4000
LR_cosine8k_warm1k = $(LR_cosine) ++trainer.train.lr_scheduler.lr_lambda.total_step=7600 ++trainer.train.lr_scheduler.lr_lambda.warmup=800
LR_cosine44k_warm6k = $(LR_cosine) ++trainer.train.lr_scheduler.lr_lambda.total_step=44100 ++trainer.train.lr_scheduler.lr_lambda.warmup=5500
LR_cosine118k_warm15k = $(LR_cosine) ++trainer.train.lr_scheduler.lr_lambda.total_step=117800 ++trainer.train.lr_scheduler.lr_lambda.warmup=14700
LR_cosine216k_warm27k = $(LR_cosine) ++trainer.train.lr_scheduler.lr_lambda.total_step=216000 ++trainer.train.lr_scheduler.lr_lambda.warmup=27000
LR_cosine32k = $(LR_cosine) ++trainer.train.lr_scheduler.lr_lambda.total_step=32000 ++trainer.train.lr_scheduler.lr_lambda.warmup=0
LR_cosine118k = $(LR_cosine) ++trainer.train.lr_scheduler.lr_lambda.total_step=118000 ++trainer.train.lr_scheduler.lr_lambda.warmup=0

GRAD_CLIP12 = ++trainer.train.grad_clip=12

# vqvae
VQVAE_TEMP_1M = ++trainer.train.starting_temp=1. \
	++trainer.train.temp_min=5e-3 ++trainer.train.temp_anneal_rate=1e-3
VQVAE_TEMP_2M = ++trainer.train.starting_temp=1. \
	++trainer.train.temp_min=1e-3 ++trainer.train.temp_anneal_rate=2e-4

# pretraining specific
TRANS448_VQVAE224_GRID28_MASK300 = ++trainer.trans_size=[448,448] ++trainer.vqvae_size=[224,224] ++trainer.grid_size=28 ++trainer.num_mask_patches=300
VQVAE1M_WEIGHTS = $(MODEL_VQVAE) ++trainer.vqvae_weights="../unitable_weights/vqvae_1m.pt"
VQVAE2M_WEIGHTS = $(MODEL_VQVAE_L) ++trainer.vqvae_weights="../unitable_weights/vqvae_2m.pt"

# finetuning specific
WEIGHTS_mtim_1m_base = ++trainer.trainer.beit_pretrained_weights="../unitable_weights/ssp_1m_base.pt"
WEIGHTS_mtim_1m_large = ++trainer.trainer.beit_pretrained_weights="../unitable_weights/ssp_1m_large.pt"
WEIGHTS_mtim_2m_base = ++trainer.trainer.beit_pretrained_weights="../unitable_weights/ssp_2m_base.pt"
WEIGHTS_mtim_2m_large = ++trainer.trainer.beit_pretrained_weights="../unitable_weights/ssp_2m_large.pt"
LOCK_MTIM_4 = ++trainer.trainer.freeze_beit_epoch=4

#
# Models
#

# model type
MODEL_VQVAE = model=vqvae
MODEL_VQVAE_L = $(MODEL_VQVAE) ++model.codebook_tokens=16384 ++model.hidden_dim=512
MODEL_BEIT = model=beit
MODEL_ENCODER_DECODER = model=encoderdecoder

# backbone for input preprocessing: resnet, linear projection, and convstem
IMGCNN = model/model/backbone=imgcnn
IMGLINEAR = model/model/backbone=imglinear
IMGCONVSTEM = model/model/backbone=imgconvstem

# number of layers
E4 = ++model.model.encoder.nlayer=4
E12 = ++model.model.encoder.nlayer=12
E24 = ++model.model.encoder.nlayer=24
D4 = ++model.model.decoder.nlayer=4

# transformer layer: attention heads, hidden size, activation, norm
FF4 = ++model.ff_ratio=4

NHEAD8 = ++model.nhead=8
NHEAD12 = ++model.nhead=12

NORM_FIRST = ++model.norm_first=true
NORM_LAST = ++model.norm_first=false

ACT_RELU = ++model.activation="relu"
ACT_GELU = ++model.activation="gelu"

D_MODEL512 = ++model.d_model=512
D_MODEL768 = ++model.d_model=768

# regularization
REG_d00 = ++model.dropout=0.0
REG_d02 = ++model.dropout=0.2

# linear projection patch size
P16 = ++model.backbone_downsampling_factor=16
P28 = ++model.backbone_downsampling_factor=28
P32 = ++model.backbone_downsampling_factor=32

# cnn backbone
R18 = ++model.model.backbone.backbone._target_=torchvision.models.resnet18 \
	++model.model.backbone.output_channels=512

MTIM_BASE = $(MODEL_BEIT) $(IMGLINEAR) $(NHEAD8) $(FF4) $(ACT_GELU) \
	$(NORM_FIRST) $(D_MODEL512) $(REG_d02) $(P16) $(E4)
MTIM_LARGE = $(MODEL_BEIT) $(IMGLINEAR) $(NHEAD12) $(FF4) $(ACT_GELU) \
	$(NORM_FIRST) $(D_MODEL768) $(REG_d02) $(P16) $(E12)

ARCH_BASE = $(MTIM_BASE) $(MODEL_ENCODER_DECODER) $(D4)
ARCH_LARGE = $(MTIM_LARGE) $(MODEL_ENCODER_DECODER) $(D4)


###############################################
#                 Experiments                 #
###############################################

TRAIN_vqvae := $(VOCAB_NONE) \
	$(LABEL_IMAGE) $(AUG_VQVAE) $(I224) \
	$(TRAINER_VQVAE) $(OPT_ADAMW) $(LR_1e4) $(EPOCH24)

TRAIN_mtim := $(VOCAB_NONE) \
	$(LABEL_IMAGE) $(AUG_BEIT) \
	$(TRAINER_BEIT) $(OPT_ADAMW) $(OPT_WD5e2) $(LR_5e4) \
	$(TRANS448_VQVAE224_GRID28_MASK300)

#
# mini_pubtabnet pretraining example (dataset code: mini)
#

# vq-vae
# > make experiments/vqvae_mini/.done_pretrain
EXP_vqvae_mini := $(TRAIN_vqvae) $(MINIPUBTABNET) $(VQVAE_TEMP_2M) $(BATCH80) $(MODEL_VQVAE) $(LR_cosine32k)

# visual encoder pretraining - masked tabular image modeling (MTIM)
# > make experiments/mtim_mini_base/.done_pretrain
EXP_mtim_mini_base := $(TRAIN_mtim) $(MINIPUBTABNET) $(VQVAE2M_WEIGHTS) $(MTIM_BASE) \
	$(BATCH384) $(LR_cosine8k_warm1k) $(EPOCH24)

#
# mini_pubtabnet finetuning example
#

# table structure (task code: html)
# > make experiments/ssp_2m_mini_html_base/.done_finetune
TRAIN_mini_html := $(VOCAB_HTML) \
	$(MINIPUBTABNET) $(LABEL_HTML) $(AUG_RESIZE_NORM) \
	$(TRAINER_TABLE) $(I448) $(SEQ512) \
	$(EPOCH48) $(OPT_ADAMW) $(OPT_WD5e2) $(LR_8e5)

EXP_ssp_2m_mini_html_base := $(TRAIN_mini_html) $(ARCH_BASE) \
	$(WEIGHTS_mtim_2m_base) $(LOCK_MTIM_4) $(BATCH72) $(LR_cosine93k_warm6k)

# table cell bbox (task code: bbox)
# > make experiments/ssp_2m_mini_bbox_base/.done_finetune
TRAIN_mini_bbox := $(VOCAB_BBOX) \
	$(MINIPUBTABNET) $(LABEL_BBOX) $(AUG_RESIZE_NORM) \
	$(TRAINER_TABLE) $(I448) $(SEQ1024) \
	$(EPOCH30) $(OPT_ADAMW) $(OPT_WD5e2) $(LR_3e4) $(GRAD_CLIP12)

EXP_ssp_2m_mini_bbox_base := $(TRAIN_mini_bbox) $(ARCH_BASE) \
	$(WEIGHTS_mtim_2m_base) $(LOCK_MTIM_4) $(BATCH48) $(LR_cosine77k_warm8k)

# table cell content (task code: cell)
# > make experiments/ssp_2m_mini_cell_base/.done_finetune
TRAIN_mini_cell := $(VOCAB_CELL) \
	$(MINIPUBTABNET) $(LABEL_CELL) $(AUG_RESIZE_NORM) \
	$(TRAINER_TABLE) $(I112_448) $(SEQ200) \
	$(EPOCH24) $(OPT_ADAMW) $(OPT_WD5e2) $(LR_8e5) $(GRAD_CLIP12)

EXP_ssp_2m_mini_cell_base := $(TRAIN_mini_cell) $(ARCH_BASE) \
	$(WEIGHTS_mtim_2m_base) $(LOCK_MTIM_4) $(BATCH24) $(LR_cosine216k_warm27k)

#
# cross-dataset pretraining
#

# vq-vae
EXP_vqvae_1M := $(TRAIN_vqvae) $(DATA_VQVAE_1M) $(VQVAE_TEMP_1M) $(BATCH80) $(MODEL_VQVAE) $(LR_cosine32k)
EXP_vqvae_2M := $(TRAIN_vqvae) $(DATA_VQVAE_2M) $(VQVAE_TEMP_2M) $(BATCH48) $(MODEL_VQVAE_L) $(LR_cosine118k)

# visual encoder pretraining
EXP_mtim_1M_base := $(TRAIN_mtim) $(PUB_SYN) $(VQVAE1M_WEIGHTS) $(MTIM_BASE) \
	$(BATCH384) $(LR_cosine8k_warm1k) $(EPOCH24)
EXP_mtim_1M_large := $(TRAIN_mtim) $(PUB_SYN) $(VQVAE1M_WEIGHTS) $(MTIM_LARGE) \
	$(BATCH96) $(LR_cosine30k_warm4k) $(EPOCH24)
EXP_mtim_2M_base := $(TRAIN_mtim) $(DATA_VQVAE_2M) $(VQVAE2M_WEIGHTS) $(MTIM_BASE) \
	$(BATCH256) $(LR_cosine44k_warm6k) $(EPOCH48)
EXP_mtim_2M_large := $(TRAIN_mtim) $(DATA_VQVAE_2M) $(VQVAE2M_WEIGHTS) $(MTIM_LARGE) \
	$(BATCH96) $(LR_cosine118k_warm15k) $(EPOCH48)

#
# cross-dataset finetuning
#

# table structure
# > make experiments/ssp_2m_syn_pub_html_medium/.done_finetune
TRAIN_syn_pub_html := $(VOCAB_HTML) \
	$(PUB_SYN) $(LABEL_HTML) $(AUG_RESIZE_NORM) \
	$(TRAINER_TABLE) $(I448) $(SEQ512) \
	$(EPOCH48) $(OPT_ADAMW) $(OPT_WD5e2) $(LR_8e5)

EXP_ssp_2m_syn_pub_html_large := $(TRAIN_syn_pub_html) $(ARCH_LARGE) \
	$(WEIGHTS_mtim_2m_large) $(LOCK_MTIM_4) $(BATCH72) $(LR_cosine93k_warm6k)

# table cell bbox
# > make experiments/ssp_2m_syn_pub_bbox_medium/.done_finetune
TRAIN_syn_pub_bbox := $(VOCAB_BBOX) \
	$(PUB_SYN) $(LABEL_BBOX) $(AUG_RESIZE_NORM) \
	$(TRAINER_TABLE) $(I448) $(SEQ1024) \
	$(EPOCH30) $(OPT_ADAMW) $(OPT_WD5e2) $(LR_3e4) $(GRAD_CLIP12)

EXP_ssp_2m_syn_pub_bbox_large := $(TRAIN_syn_pub_bbox) $(ARCH_LARGE) \
	$(WEIGHTS_mtim_2m_large) $(LOCK_MTIM_4) $(BATCH48) $(LR_cosine77k_warm8k)

# table cell content
# > make experiments/syn_pub_pub1m_cell_medium/.done_finetune
TRAIN_syn_pub_pub1m_cell := $(VOCAB_CELL) \
	$(PUB_SYN_PUB1M) $(LABEL_CELL) $(AUG_RESIZE_NORM) \
	$(TRAINER_TABLE) $(I112_448) $(SEQ200) \
	$(EPOCH24) $(OPT_ADAMW) $(OPT_WD5e2) $(LR_8e5) $(GRAD_CLIP12)

EXP_ssp_2m_syn_pub_pub1m_cell_large := $(TRAIN_syn_pub_pub1m_cell) $(ARCH_LARGE) \
	$(WEIGHTS_mtim_2m_base) $(LOCK_MTIM_4) $(BATCH24) $(LR_cosine216k_warm27k)