File size: 16,331 Bytes
daf0288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
from typing import Tuple, List, Sequence, Optional, Union
from pathlib import Path
import re
import torch
import tokenizers as tk
from PIL import Image
from matplotlib import pyplot as plt
from matplotlib import patches
from torchvision import transforms
from torch import nn, Tensor
from functools import partial
import numpy.typing as npt
from numpy import uint8
ImageType = npt.NDArray[uint8]
import warnings
import time 
import argparse
from bs4 import BeautifulSoup as bs

from .src.model import EncoderDecoder, ImgLinearBackbone, Encoder, Decoder

from .src.utils import subsequent_mask, pred_token_within_range, greedy_sampling, bbox_str_to_token_list, html_str_to_token_list,cell_str_to_token_list, build_table_from_html_and_cell, html_table_template
from .src.trainer.utils import VALID_HTML_TOKEN, VALID_BBOX_TOKEN, INVALID_CELL_TOKEN

"""
 ImgLinearBackbone, Encoder, Decoder are in components.py 
 EncoderDecoder is in encoderdecoder.py
 
"""

warnings.filterwarnings('ignore')


class UnitableFullPredictor():
    def __init__(self):
        pass 

    def load_vocab_and_model(
        self,
        backbone,
        encoder,
        decoder,
        vocab_path: Union[str, Path],
        max_seq_len: int,
        model_weights: Union[str, Path],
    ) -> Tuple[tk.Tokenizer, EncoderDecoder]:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        vocab = tk.Tokenizer.from_file(vocab_path)
        d_model = 768
        dropout = 0.2
        model = EncoderDecoder(
            backbone= backbone,
            encoder= encoder,
            decoder= decoder,
            vocab_size= vocab.get_vocab_size(),
            d_model= d_model,
            padding_idx= vocab.token_to_id("<pad>"),
            max_seq_len=max_seq_len,
            dropout=dropout,
            norm_layer=partial(nn.LayerNorm, eps=1e-6)
        )
        # it loads weights onto the CPU first and then moves the model to the desired device
        model.load_state_dict(torch.load(model_weights, map_location="cpu"))
        model = model.to(device)

        return vocab, model
    

    def autoregressive_decode(
        self,
        model: EncoderDecoder,
        image: Tensor,
        prefix: Sequence[int],
        max_decode_len: int,
        eos_id: int,
        token_whitelist: Optional[Sequence[int]] = None,
        token_blacklist: Optional[Sequence[int]] = None,
    ) -> Tensor:
        model.eval()
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        with torch.no_grad():
            """
            The encoder takes the input data (in this case, an image) and transforms it into a high-dimensional feature representation.
            This feature representation, or memory tensor, captures the essential information from the input data needed to generate the output sequence.
            """
            memory = model.encode(image)
            """
            Creates a context tensor from the prefix and repeats it to match the batch size of the image, moving it to the appropriate device.
            """
            context = torch.tensor(prefix, dtype=torch.int32).repeat(image.shape[0], 1).to(device)

        for _ in range(max_decode_len):
            eos_flag = [eos_id in k for k in context]
            if all(eos_flag):
                break

            with torch.no_grad():
                causal_mask = subsequent_mask(context.shape[1]).to(device)
                logits = model.decode(
                    memory, context, tgt_mask=causal_mask, tgt_padding_mask=None
                )
                logits = model.generator(logits)[:, -1, :]

            logits = pred_token_within_range(
                logits.detach(),
                white_list=token_whitelist,
                black_list=token_blacklist,
            )

            next_probs, next_tokens = greedy_sampling(logits)
            context = torch.cat([context, next_tokens], dim=1)
        return context
    

    @staticmethod 
    def image_to_tensor(image: Image, size: Tuple[int, int]) -> Tensor:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        T = transforms.Compose([
            transforms.Resize(size),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.86597056,0.88463002,0.87491087], std = [0.20686628,0.18201602,0.18485524])
        ])
        image_tensor = T(image)
        image_tensor = image_tensor.to(device).unsqueeze(0)

        return image_tensor
    
    def rescale_bbox(
        self,
        bbox: Sequence[Sequence[float]],
        src: Tuple[int, int],
        tgt: Tuple[int, int]
    ) -> Sequence[Sequence[float]]:
        assert len(src) == len(tgt) == 2
        ratio = [tgt[0] / src[0], tgt[1] / src[1]] * 2
        print(ratio)
        bbox = [[int(round(i * j)) for i, j in zip(entry, ratio)] for entry in bbox]
        return bbox

    
    def predict(self, images:List[Image.Image],debugfolder_filename_page_name:str): 
        MODEL_FILE_NAME = ["unitable_large_structure.pt", "unitable_large_bbox.pt", "unitable_large_content.pt"]
        MODEL_DIR = Path("./unitable/experiments/unitable_weights")
                # UniTable large model
        d_model = 768
        patch_size = 16
        nhead = 12
        dropout = 0.2
        
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        backbone= ImgLinearBackbone(d_model=d_model, patch_size=patch_size)
        encoder= Encoder(
            d_model=d_model,
            nhead=nhead,
            dropout=dropout,
            activation="gelu",
            norm_first=True,
            nlayer=12,
            ff_ratio=4,
        )
        decoder= Decoder(
            d_model=d_model,
            nhead=nhead,
            dropout=dropout,
            activation="gelu",
            norm_first=True,
            nlayer=4,
            ff_ratio=4,
        )

        print("Running table transformer + Unitable Full Model")
        """
        Step 1 Load Table Structure Model 
        """

        start1 = time.time()
        # Table structure extraction
        vocabS, modelS = self.load_vocab_and_model(
            backbone=backbone,
            encoder=encoder,
            decoder=decoder,
            vocab_path="./unitable/vocab/vocab_html.json",
            max_seq_len=784,
            model_weights=MODEL_DIR / MODEL_FILE_NAME[0]
        )

        end1 = time.time()
        print("time to load table structure model ",end1-start1,"seconds")
        
        """
        Step 2 prepare images to tensor 
        """
        image_tensors = []
        for i in range(len(images)):
            image_size = images[i].size
            # Image transformation
            image_tensor = self.image_to_tensor(images[i], (448, 448))
            image_tensors.append(image_tensor)
        print("Check if image_tensors is what i want it to be ")
        print(type(image_tensors))

        
        # This will be list of arrays(pred_html), which is again list of array 
        pred_htmls = []
        for i in range(len(image_tensors)):
            #print(image_tensor)
            print("Processing table "+str(i))
            start2 = time.time()
            # Inference
            pred_html = self.autoregressive_decode(
                model= modelS,
                image= image_tensors[i],
                prefix=[vocabS.token_to_id("[html]")],
                max_decode_len=512,
                eos_id=vocabS.token_to_id("<eos>"),
                token_whitelist=[vocabS.token_to_id(i) for i in VALID_HTML_TOKEN],
                token_blacklist = None
            )
            
            end2 = time.time()
            
            print("time for inference table structure ",end2-start2,"seconds")
            pred_html = pred_html.detach().cpu().numpy()[0]
            pred_html = vocabS.decode(pred_html, skip_special_tokens=False)

            pred_html = html_str_to_token_list(pred_html)
            pred_htmls.append(pred_html)
            print(pred_html)
        """
        Step 3 Load Table Cell detection 
        """
        

        start3 = time.time()
        # Table cell bbox detection
        vocabB, modelB = self.load_vocab_and_model(
            backbone=backbone,
            encoder=encoder,
            decoder=decoder,
            vocab_path="./unitable/vocab/vocab_bbox.json",
            max_seq_len=1024,
            model_weights=MODEL_DIR / MODEL_FILE_NAME[1],
        )
        end3 = time.time()
        print("time to load cell bbox detection model ",end3-start3,"seconds")
        """
        Step 4 do the pred_bboxes detection 
        """

        pred_bboxs =[]
        for i in range(len(image_tensors)):
            start4 = time.time()
            # Inference
            pred_bbox = self.autoregressive_decode(
                model=modelB,
                image=image_tensors[i],
                prefix=[vocabB.token_to_id("[bbox]")],
                max_decode_len=1024,
                eos_id=vocabB.token_to_id("<eos>"),
                token_whitelist=[vocabB.token_to_id(i) for i in VALID_BBOX_TOKEN[: 449]],
                token_blacklist = None
            )
            end4 = time.time()
            print("Processing table "+str(i))
            print("time to do inference for table cell bbox detection model ",end4-start4,"seconds")
            # Convert token id to token text
            pred_bbox = pred_bbox.detach().cpu().numpy()[0]
            pred_bbox = vocabB.decode(pred_bbox, skip_special_tokens=False)
            pred_bbox = bbox_str_to_token_list(pred_bbox)
            pred_bbox = self.rescale_bbox(pred_bbox, src=(448, 448), tgt=images[i].size)
            print(pred_bbox)

            print("Size of the image ")
            #(1498, 971)
            print(images[i].size)
            print("Number of bounding boxes ")
            print(len(pred_bbox))
            countcells = 0
            for elem in pred_htmls[i] : 
                if elem == '<td>[]</td>' or elem == '>[]</td>':
                    countcells+=1
            
            #275
            print("number of countcells")
            print(countcells)
            if countcells > 256: 
                #TODO Extra processing for big tables 

                #Find the last incomplete row and its ymax coordinate 

                # Last bbox's ymax gives us coordinate of where the cutted off row starts 
                #IMPORTANT : pred_bbox is xmin, ymin, xmax, ymax
                cut_off = pred_bbox[-1][1]

                #This will be used to distinguish how many cells are already detected in that row. 

                last_cells_redudant = 0
                for cell in reversed(pred_bbox):
                    if cut_off-5 < cell[1] <cut_off+5:
                        last_cells_redudant+=1
                    else:
                        break

                width = images[i].size[0]
                height = images[i].size[1]
                #IMPORTANT : crop takes in (xmin, ymax, xmax, ymin) coordintes !!!
                bbox = (0, cut_off, width, height)
                # Crop the image to the specified bounding box
                cropped_image = images[i].crop(bbox)
                #cropped_image.save("./res/table_debug/cropped_image_for_extra_bbox_det_table_num_"+str(i)+".png")
                image_tensor = self.image_to_tensor(cropped_image, (448, 448))
                pred_bbox_extra = self.autoregressive_decode(
                    model=modelB,
                    image=image_tensor,
                    prefix=[vocabB.token_to_id("[bbox]")],
                    max_decode_len=1024,
                    eos_id=vocabB.token_to_id("<eos>"),
                    token_whitelist=[vocabB.token_to_id(i) for i in VALID_BBOX_TOKEN[: 449]],
                    token_blacklist = None
                )
                # Convert token id to token text
                pred_bbox_extra = pred_bbox_extra.detach().cpu().numpy()[0]
                pred_bbox_extra = vocabB.decode(pred_bbox_extra, skip_special_tokens=False)
                pred_bbox_extra = bbox_str_to_token_list(pred_bbox_extra)
                
                pred_bbox_extra = pred_bbox_extra[last_cells_redudant-1:]
                
                pred_bbox_extra = self.rescale_bbox(pred_bbox_extra, src=(448, 448), tgt=cropped_image.size)
                pred_bbox_extra = [[i[0], i[1]+cut_off, i[2], i[3]+cut_off] for i in pred_bbox_extra]
                
                pred_bbox = pred_bbox + pred_bbox_extra

                print("extra boxes:")
                print(pred_bbox_extra)
                print(len(pred_bbox_extra))

            pred_bboxs.append(pred_bbox)
            fig, ax = plt.subplots(figsize=(12, 10))
            for j in pred_bbox:
                #i is xmin, ymin, xmax, ymax based on the function usage
                rect = patches.Rectangle(j[:2], j[2] - j[0], j[3] - j[1], linewidth=1, edgecolor='r', facecolor='none')
                ax.add_patch(rect)
            ax.set_axis_off()
            ax.imshow(images[i])
            fig.savefig(debugfolder_filename_page_name+str(i)+".png", bbox_inches='tight', dpi=300)


        """
        Step 5 : Load table cell recognition contents 
        """

        start4 = time.time()
        # Table cell bbox detection
        vocabC, modelC = self.load_vocab_and_model(
            backbone=backbone,
            encoder=encoder,
            decoder=decoder,
            vocab_path="./unitable/vocab/vocab_cell_6k.json",
            max_seq_len=200,
            model_weights=MODEL_DIR / MODEL_FILE_NAME[2],
        )
        end4 = time.time()
        print("time to load cell recognition model ",end4-start4,"seconds")

        pred_cells = []
        """
        Step 6 : Decode for all tables 
        """
        for i in range(len(images)):

            cell_image_tensors_for_img =[]
            for bbox in pred_bboxs[i]:
                cropped_img = images[i].crop(bbox)
                if cropped_img.size[0] >0:
                    cell_image_tensors_for_img.append(self.image_to_tensor(cropped_img, size=(112, 448)))
            
            cell_image_tensors_for_img = torch.cat(cell_image_tensors_for_img, dim=0).to(device)
            #print("size of tensor")
            #print(image_tensor.size())
            
            start4 = time.time()
            # Inference
            pred_cell = self.autoregressive_decode(
                model=modelC,
                image=cell_image_tensors_for_img,
                prefix=[vocabC.token_to_id("[cell]")],
                max_decode_len=200,
                eos_id=vocabC.token_to_id("<eos>"),
                token_whitelist=None,
                token_blacklist = [vocabC.token_to_id(i) for i in INVALID_CELL_TOKEN]
            )

            # Convert token id to token text
            pred_cell = pred_cell.detach().cpu().numpy()
            pred_cell = vocabC.decode_batch(pred_cell, skip_special_tokens=False)

            end4 = time.time()
            print("Processing table "+str(i))
            print("time to do cell recognition ",end4-start4,"seconds")

            pred_cell = [cell_str_to_token_list(i) for i in pred_cell]
            #The code finds instances in each string of pred_cell where there is a digit followed by any character and then whitespace followed by another digit.
            #It replaces these instances with the first digit, followed by a period, followed by the second digit, effectively removing the whitespace and any character between the digits and replacing it with a period.
            pred_cell = [re.sub(r'(\d).\s+(\d)', r'\1.\2', i) for i in pred_cell]

            print(pred_cell)
            pred_cells.append(pred_cell)
            print(type(pred_cells))

        table_codes =[]
        for pred_html, pred_cell in zip(pred_htmls, pred_cells):
            # Combine the table structure and cell content
            pred_code = build_table_from_html_and_cell(pred_html, pred_cell)
            pred_code = "".join(pred_code)
            pred_code = html_table_template(pred_code)

            # Display the HTML table
            soup = bs(pred_code)
            table_code = soup.prettify()
            print(table_code)
            table_codes.append(table_code)
        return table_codes