alps / unitable /unitable_full_singleimage.py
yumikimi381's picture
Upload folder using huggingface_hub
daf0288 verified
from typing import Tuple, List, Sequence, Optional, Union
from pathlib import Path
import re
import torch
import tokenizers as tk
from PIL import Image
from matplotlib import pyplot as plt
from matplotlib import patches
from torchvision import transforms
from torch import nn, Tensor
from functools import partial
import numpy.typing as npt
from numpy import uint8
ImageType = npt.NDArray[uint8]
import warnings
import time
import argparse
from bs4 import BeautifulSoup as bs
from .src.model import EncoderDecoder, ImgLinearBackbone, Encoder, Decoder
from .src.utils import subsequent_mask, pred_token_within_range, greedy_sampling, bbox_str_to_token_list, html_str_to_token_list,cell_str_to_token_list, build_table_from_html_and_cell, html_table_template
from .src.trainer.utils import VALID_HTML_TOKEN, VALID_BBOX_TOKEN, INVALID_CELL_TOKEN
warnings.filterwarnings('ignore')
class UnitableFullSinglePredictor():
def __init__(self):
MODEL_FILE_NAME = ["unitable_large_structure.pt", "unitable_large_bbox.pt", "unitable_large_content.pt"]
MODEL_DIR = Path("unitable/experiments/unitable_weights")
# UniTable large model
self.d_model = 768
self.patch_size = 16
self.nhead = 12
self.dropout = 0.2
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.backbone= ImgLinearBackbone(d_model=self.d_model, patch_size=self.patch_size)
self.encoder= Encoder(
d_model=self.d_model,
nhead=self.nhead,
dropout=self.dropout,
activation="gelu",
norm_first=True,
nlayer=12,
ff_ratio=4,
)
self.decoder= Decoder(
d_model=self.d_model,
nhead=self.nhead,
dropout=self.dropout,
activation="gelu",
norm_first=True,
nlayer=4,
ff_ratio=4,
)
"""
start1 = time.time()
# Table structure extraction
self.vocabS, self.modelS = self.load_vocab_and_model(
backbone= ImgLinearBackbone(d_model=self.d_model, patch_size=self.patch_size),
encoder= Encoder(
d_model=self.d_model,
nhead=self.nhead,
dropout=self.dropout,
activation="gelu",
norm_first=True,
nlayer=12,
ff_ratio=4,
),
decoder= Decoder(
d_model=self.d_model,
nhead=self.nhead,
dropout=self.dropout,
activation="gelu",
norm_first=True,
nlayer=4,
ff_ratio=4,
),
d_model= self.d_model,
dropout= self.dropout,
vocab_path="unitable/vocab/vocab_html.json",
max_seq_len=784,
model_weights=MODEL_DIR / MODEL_FILE_NAME[0]
)
end1 = time.time()
print("time to load table structure model ",end1-start1,"seconds")
start3 = time.time()
# Table cell bbox detection
self.vocabB, self.modelB = self.load_vocab_and_model(
backbone = ImgLinearBackbone(d_model=self.d_model, patch_size=self.patch_size),
encoder = Encoder(
d_model= self.d_model,
nhead= self.nhead,
dropout = self.dropout,
activation="gelu",
norm_first=True,
nlayer=12,
ff_ratio=4,
),
decoder = Decoder(
d_model= self.d_model,
nhead= self.nhead,
dropout = self.dropout,
activation="gelu",
norm_first=True,
nlayer=4,
ff_ratio=4,
),
d_model= self.d_model,
dropout= self.dropout,
vocab_path="unitable/vocab/vocab_bbox.json",
max_seq_len=1024,
model_weights=MODEL_DIR / MODEL_FILE_NAME[1],
)
end3 = time.time()
print("time to load cell bbox detection model ",end3-start3,"seconds")
start4 = time.time()
# Table cell bbox detection
self.vocabC, self.modelC = self.load_vocab_and_model(
backbone = ImgLinearBackbone(d_model=self.d_model, patch_size=self.patch_size),
encoder = Encoder(
d_model= self.d_model,
nhead= self.nhead,
dropout = self.dropout,
activation="gelu",
norm_first=True,
nlayer=12,
ff_ratio=4,
),
decoder = Decoder(
d_model= self.d_model,
nhead= self.nhead,
dropout = self.dropout,
activation="gelu",
norm_first=True,
nlayer=4,
ff_ratio=4,
),
d_model= self.d_model,
dropout= self.dropout,
vocab_path="unitable/vocab/vocab_cell_6k.json",
max_seq_len=200,
#Using the content recognition model i guess
model_weights=MODEL_DIR / MODEL_FILE_NAME[2],
)
end4 = time.time()
print("time to load cell recognition model ",end4-start4,"seconds")
"""
def load_vocab_and_model(
self,
vocab_path: Union[str, Path],
max_seq_len: int,
model_weights: Union[str, Path],
) -> Tuple[tk.Tokenizer, EncoderDecoder]:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vocab = tk.Tokenizer.from_file(vocab_path)
model = EncoderDecoder(
backbone= self.backbone,
encoder= self.encoder,
decoder= self.decoder,
vocab_size= vocab.get_vocab_size(),
d_model= self.d_model,
padding_idx= vocab.token_to_id("<pad>"),
max_seq_len=max_seq_len,
dropout=self.dropout,
norm_layer=partial(nn.LayerNorm, eps=1e-6)
)
# it loads weights onto the CPU first and then moves the model to the desired device
model.load_state_dict(torch.load(model_weights, map_location="cpu"))
model = model.to(device)
return vocab, model
def autoregressive_decode(
self,
model: EncoderDecoder,
image: Tensor,
prefix: Sequence[int],
max_decode_len: int,
eos_id: int,
token_whitelist: Optional[Sequence[int]] = None,
token_blacklist: Optional[Sequence[int]] = None,
) -> Tensor:
model.eval()
with torch.no_grad():
memory = model.encode(image)
context = torch.tensor(prefix, dtype=torch.int32).repeat(image.shape[0], 1).to(self.device)
for _ in range(max_decode_len):
eos_flag = [eos_id in k for k in context]
if all(eos_flag):
break
with torch.no_grad():
causal_mask = subsequent_mask(context.shape[1]).to(self.device)
logits = model.decode(
memory, context, tgt_mask=causal_mask, tgt_padding_mask=None
)
logits = model.generator(logits)[:, -1, :]
logits = pred_token_within_range(
logits.detach(),
white_list=token_whitelist,
black_list=token_blacklist,
)
next_probs, next_tokens = greedy_sampling(logits)
context = torch.cat([context, next_tokens], dim=1)
return context
@staticmethod
def image_to_tensor(image: Image, size: Tuple[int, int]) -> Tensor:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Resize the image with padding
#resized_image = UnitableFullPredictor.resize_with_padding(image, size)
T = transforms.Compose([
transforms.Resize(size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.86597056,0.88463002,0.87491087], std = [0.20686628,0.18201602,0.18485524])
])
image_tensor = T(image)
image_tensor = image_tensor.to(device).unsqueeze(0)
return image_tensor
"""
@staticmethod
def resize_with_padding(image: Image, target_size: Tuple[int, int]) -> Image:
#Resize the image to fit within the target size while preserving aspect ratio,
#then add padding to match the target size.
original_width, original_height = image.size
target_width, target_height = target_size
# Calculate the new size preserving aspect ratio
aspect_ratio = original_width / original_height
if target_width / target_height > aspect_ratio:
new_height = target_height
new_width = int(new_height * aspect_ratio)
else:
new_width = target_width
new_height = int(new_width / aspect_ratio)
# Resize the image to the new size
resized_image = image.resize((new_width, new_height),Image.LANCZOS)
# Create a new image with white background
new_image = Image.new("RGB", (target_width, target_height), (255, 255, 255))
# Paste the resized image onto the white background
paste_position = ((target_width - new_width) // 2, (target_height - new_height) // 2)
new_image.paste(resized_image, paste_position)
new_image.save("../res/table_resize_with_padding.png")
return new_image
"""
def rescale_bbox(
self,
bbox: Sequence[Sequence[float]],
src: Tuple[int, int],
tgt: Tuple[int, int]
) -> Sequence[Sequence[float]]:
assert len(src) == len(tgt) == 2
ratio = [tgt[0] / src[0], tgt[1] / src[1]] * 2
print(ratio)
bbox = [[int(round(i * j)) for i, j in zip(entry, ratio)] for entry in bbox]
return bbox
"""
@staticmethod
def rescale_bbox(
bbox: Sequence[Sequence[float]],
src: Tuple[int, int],
tgt: Tuple[int, int]
) -> Sequence[Sequence[float]]:
#Rescale bounding boxes according to the transformation applied in resize_with_padding.
src_width, src_height = src
tgt_width, tgt_height = tgt
# Calculate the new size preserving aspect ratio
aspect_ratio = src_width / src_height
if tgt_width / tgt_height > aspect_ratio:
new_height = tgt_height
new_width = int(new_height * aspect_ratio)
else:
new_width = tgt_width
new_height = int(new_width / aspect_ratio)
# Calculate the scale factors
#THIS *2 factor was done in their code - why ? i have no clue
scale_x = (new_width / src_width ) * 2
scale_y = (new_height / src_height) *2
# Calculate the padding
pad_x = (tgt_width - new_width) // 2
pad_y = (tgt_height - new_height) // 2
# Rescale and adjust the bounding boxes
rescaled_bbox = []
for entry in bbox:
x_min = int(round(entry[0] * scale_x -pad_x))
y_min = int(round(entry[1] * scale_y - pad_y))
x_max = int(round(entry[2] * scale_x - pad_x))
y_max = int(round(entry[3] * scale_y - pad_y))
rescaled_bbox.append([x_min, y_min, x_max, y_max])
return rescaled_bbox
"""
def predict(self, image:ImageType):
MODEL_FILE_NAME = ["unitable_large_structure.pt", "unitable_large_bbox.pt", "unitable_large_content.pt"]
MODEL_DIR = Path("unitable/experiments/unitable_weights")
image_size = image.size
print("RUNING SINGLE IMAGE UNITABLE FOR DEBUGGGING ")
# Image transformation
image_tensor = self.image_to_tensor(image, (448, 448))
#print(image_tensor)
"""
Step 1 Table Structure recognition
"""
start1 = time.time()
# Table structure extraction
vocabS, modelS = self.load_vocab_and_model(
vocab_path="unitable/vocab/vocab_html.json",
max_seq_len=784,
model_weights=MODEL_DIR / MODEL_FILE_NAME[0]
)
end1 = time.time()
print("time to load table structure model ",end1-start1,"seconds")
start2 = time.time()
# Inference
pred_html = self.autoregressive_decode(
model= modelS,
image= image_tensor,
prefix=[vocabS.token_to_id("[html]")],
max_decode_len=512,
eos_id=vocabS.token_to_id("<eos>"),
token_whitelist=[vocabS.token_to_id(i) for i in VALID_HTML_TOKEN],
token_blacklist = None
)
end2 = time.time()
print("time for inference table structure ",end2-start2,"seconds")
# Convert token id to token text
pred_html = pred_html.detach().cpu().numpy()[0]
pred_html = vocabS.decode(pred_html, skip_special_tokens=False)
#print(pred_html)
pred_html = html_str_to_token_list(pred_html)
print(pred_html)
"""
Step 2 Table Cell detection
"""
start3 = time.time()
# Table cell bbox detection
vocabB, modelB = self.load_vocab_and_model(
vocab_path="unitable/vocab/vocab_bbox.json",
max_seq_len=1024,
model_weights=MODEL_DIR / MODEL_FILE_NAME[1],
)
end3 = time.time()
print("time to load cell bbox detection model ",end3-start3,"seconds")
start4 = time.time()
# Inference
pred_bbox = self.autoregressive_decode(
model=modelB,
image=image_tensor,
prefix=[vocabB.token_to_id("[bbox]")],
max_decode_len=1024,
eos_id=vocabB.token_to_id("<eos>"),
token_whitelist=[vocabB.token_to_id(i) for i in VALID_BBOX_TOKEN[: 449]],
token_blacklist = None
)
end4 = time.time()
print("time to do inference for table cell bbox detection model ",end4-start4,"seconds")
# Convert token id to token text
pred_bbox = pred_bbox.detach().cpu().numpy()[0]
pred_bbox = vocabB.decode(pred_bbox, skip_special_tokens=False)
pred_bbox = bbox_str_to_token_list(pred_bbox)
pred_bbox = self.rescale_bbox(pred_bbox, src=(448, 448), tgt=image.size)
print(pred_bbox)
print("Size of the image ")
#(1498, 971)
print(image.size)
print("Number of bounding boxes ")
print(len(pred_bbox))
countcells = 0
#startBody = False
#startFirstRow = True
#numElemInRow = 0
for elem in pred_html :
#if elem == '<tbody>':
# startBody = True
#elif startBody ==True and elem == '<tr>':
# startFirstRow = True
#elif startFirstRow == True and elem == '<td>[]</td>':
# numElemInRow +=1
#elif startBody ==True and elem == '</tr>':
# startFirstRow = False
# startBody = False
if elem == '<td>[]</td>':
countcells+=1
#275
print(countcells)
if countcells > len(pred_bbox):
#TODO Extra processing for big tables
#Find the last incomplete row and its ymax coordinate
# Last bbox's ymax gives us coordinate of where the cutted off row starts
#IMPORTANT : pred_bbox is xmin, ymax, xmax, ymin
cut_off = pred_bbox[-1][1]
width = image.size[0]
height = image.size[1]
#bbox = (0, cut_off, width, height)
#IMPORTANT : crop takes in (xmin, ymax, xmax, ymin) coordintes !!!
bbox = (0, cut_off, width, height)
# Crop the image to the specified bounding box
cropped_image = image.crop(bbox)
cropped_image.save("./res/cropped_image_for_extra_bbox_det.png")
image_tensor = self.image_to_tensor(cropped_image, (448, 448))
pred_bbox_extra = self.autoregressive_decode(
model=modelB,
image=image_tensor,
prefix=[vocabB.token_to_id("[bbox]")],
max_decode_len=1024,
eos_id=vocabB.token_to_id("<eos>"),
token_whitelist=[vocabB.token_to_id(i) for i in VALID_BBOX_TOKEN[: 449]],
token_blacklist = None
)
# Convert token id to token text
pred_bbox_extra = pred_bbox_extra.detach().cpu().numpy()[0]
pred_bbox_extra = vocabB.decode(pred_bbox_extra, skip_special_tokens=False)
pred_bbox_extra = bbox_str_to_token_list(pred_bbox_extra)
numberOrCellsToAdd = countcells-len(pred_bbox)
pred_bbox_extra = pred_bbox_extra[-numberOrCellsToAdd:]
pred_bbox_extra = self.rescale_bbox(pred_bbox_extra, src=(448, 448), tgt=cropped_image.size)
#This resulted in table_bbox_test_extra_3.png
#pred_bbox_extra = [[i[0], i[1]+cut_off, i[2], i[3]+cut_off] for i in pred_bbox_extra]
pred_bbox_extra = [[i[0], i[1]+cut_off, i[2], i[3]+cut_off] for i in pred_bbox_extra]
pred_bbox = pred_bbox + pred_bbox_extra
#[[25, 63, 152, 86], [227, 63, 292, 86], [326, 63, 373, 86], [413, 63, 460, 86], [562, 63, 609, 86], [708, 63, 758, 86], [848, 63, 895, 86], [935, 63, 982, 86], [1025, 63, 1075, 86], [1119, 63, 1165, 86], [1280, 63, 1327, 86]]
print(pred_bbox_extra)
#11
print(len(pred_bbox_extra))
fig, ax = plt.subplots(figsize=(12, 10))
for i in pred_bbox:
#i is xmin, ymin, xmax, ymax based on the function usage
rect = patches.Rectangle(i[:2], i[2] - i[0], i[3] - i[1], linewidth=1, edgecolor='r', facecolor='none')
ax.add_patch(rect)
ax.set_axis_off()
ax.imshow(image)
fig.savefig('./res/table_debug3/singleimageres.png', bbox_inches='tight', dpi=300)
"""
Step 3 : Table cell content recognition
"""
start4 = time.time()
# Table cell bbox detection
vocabC, modelC = self.load_vocab_and_model(
vocab_path="unitable/vocab/vocab_cell_6k.json",
max_seq_len=200,
model_weights=MODEL_DIR / MODEL_FILE_NAME[2],
)
end4 = time.time()
print("time to load cell recognition model ",end4-start4,"seconds")
# Cell image cropping and transformation
"""
images = [image.crop(bbox) for bbox in pred_bbox]
for idx, img in enumerate(images):
img.save("res/debug/cell_{}.png".format(idx))
"""
#Cropping boundaries are fine
image_tensor = [self.image_to_tensor(image.crop(bbox), size=(112, 448)) for bbox in pred_bbox]
image_tensor = torch.cat(image_tensor, dim=0)
#print("size of tensor")
#print(image_tensor.size())
start4 = time.time()
# Inference
pred_cell = self.autoregressive_decode(
model=modelC,
image=image_tensor,
prefix=[vocabC.token_to_id("[cell]")],
max_decode_len=200,
eos_id=vocabC.token_to_id("<eos>"),
token_whitelist=None,
token_blacklist = [vocabC.token_to_id(i) for i in INVALID_CELL_TOKEN]
)
# Convert token id to token text
pred_cell = pred_cell.detach().cpu().numpy()
pred_cell = vocabC.decode_batch(pred_cell, skip_special_tokens=False)
end4 = time.time()
print("time to do cell recognition ",end4-start4,"seconds")
pred_cell = [cell_str_to_token_list(i) for i in pred_cell]
pred_cell = [re.sub(r'(\d).\s+(\d)', r'\1.\2', i) for i in pred_cell]
print(pred_cell)
# Combine the table structure and cell content
pred_code = build_table_from_html_and_cell(pred_html, pred_cell)
pred_code = "".join(pred_code)
pred_code = html_table_template(pred_code)
# Display the HTML table
soup = bs(pred_code)
table_code = soup.prettify()
print(table_code)