alps / unitable /unitable_run_double_check.py
yumikimi381's picture
Upload folder using huggingface_hub
daf0288 verified
# -*- coding: utf-8 -*-
"""Unitable_run_double_check.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1oaXgLoIaNY8SJwUQB_vMyiXPNZGKOIpb
"""
from typing import Tuple, List, Sequence, Optional, Union
from pathlib import Path
import re
import torch
import tokenizers as tk
from PIL import Image
from matplotlib import pyplot as plt
from matplotlib import patches
from torchvision import transforms
from torch import nn, Tensor
from functools import partial
from bs4 import BeautifulSoup as bs
import warnings
import time
from src.model import EncoderDecoder, ImgLinearBackbone, Encoder, Decoder
from src.utils import subsequent_mask, pred_token_within_range, greedy_sampling, bbox_str_to_token_list, cell_str_to_token_list, html_str_to_token_list, build_table_from_html_and_cell, html_table_template
from src.trainer.utils import VALID_HTML_TOKEN, VALID_BBOX_TOKEN, INVALID_CELL_TOKEN
warnings.filterwarnings('ignore')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Check all model weights have been downloaded to experiments/unitable_weights
MODEL_FILE_NAME = ["unitable_large_structure.pt", "unitable_large_bbox.pt", "unitable_large_content.pt"]
MODEL_DIR = Path("./experiments/unitable_weights")
assert all([(MODEL_DIR / name).is_file() for name in MODEL_FILE_NAME]), f"Please download model weights from HuggingFace: https://huggingface.co/poloclub/UniTable/tree/main"
# Load tabular image
image_path = "../TestingFilesImages/table_Test1.png"
image = Image.open(image_path).convert("RGB")
image_size = image.size
fig, ax = plt.subplots(figsize=(12, 10))
ax.imshow(image)
# UniTable large model
d_model = 768
patch_size = 16
nhead = 12
dropout = 0.2
start= time.time()
backbone = ImgLinearBackbone(d_model=d_model, patch_size=patch_size)
encoder = Encoder(
d_model=d_model,
nhead=nhead,
dropout = dropout,
activation="gelu",
norm_first=True,
nlayer=12,
ff_ratio=4,
)
decoder = Decoder(
d_model=d_model,
nhead=nhead,
dropout = dropout,
activation="gelu",
norm_first=True,
nlayer=4,
ff_ratio=4,
)
end= time.time()
time1 = end-start
print("time to load" + str(time1))
def autoregressive_decode(
model: EncoderDecoder,
image: Tensor,
prefix: Sequence[int],
max_decode_len: int,
eos_id: int,
token_whitelist: Optional[Sequence[int]] = None,
token_blacklist: Optional[Sequence[int]] = None,
) -> Tensor:
model.eval()
with torch.no_grad():
memory = model.encode(image)
context = torch.tensor(prefix, dtype=torch.int32).repeat(image.shape[0], 1).to(device)
for _ in range(max_decode_len):
eos_flag = [eos_id in k for k in context]
if all(eos_flag):
break
with torch.no_grad():
causal_mask = subsequent_mask(context.shape[1]).to(device)
logits = model.decode(
memory, context, tgt_mask=causal_mask, tgt_padding_mask=None
)
logits = model.generator(logits)[:, -1, :]
logits = pred_token_within_range(
logits.detach(),
white_list=token_whitelist,
black_list=token_blacklist,
)
next_probs, next_tokens = greedy_sampling(logits)
context = torch.cat([context, next_tokens], dim=1)
return context
def load_vocab_and_model(
vocab_path: Union[str, Path],
max_seq_len: int,
model_weights: Union[str, Path],
) -> Tuple[tk.Tokenizer, EncoderDecoder]:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vocab = tk.Tokenizer.from_file(vocab_path)
model = EncoderDecoder(
backbone=backbone,
encoder=encoder,
decoder=decoder,
vocab_size=vocab.get_vocab_size(),
d_model=d_model,
padding_idx=vocab.token_to_id("<pad>"),
max_seq_len=max_seq_len,
dropout=dropout,
norm_layer=partial(nn.LayerNorm, eps=1e-6)
)
model.load_state_dict(torch.load(model_weights, map_location=device))
model = model.to(device)
return vocab, model
def image_to_tensor(image: Image, size: Tuple[int, int]) -> Tensor:
T = transforms.Compose([
transforms.Resize(size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.86597056,0.88463002,0.87491087], std = [0.20686628,0.18201602,0.18485524])
])
image_tensor = T(image)
image_tensor = image_tensor.to(device).unsqueeze(0)
return image_tensor
def rescale_bbox(
bbox: Sequence[Sequence[float]],
src: Tuple[int, int],
tgt: Tuple[int, int]
) -> Sequence[Sequence[float]]:
assert len(src) == len(tgt) == 2
ratio = [tgt[0] / src[0], tgt[1] / src[1]] * 2
bbox = [[int(round(i * j)) for i, j in zip(entry, ratio)] for entry in bbox]
return bbox
# Table structure extraction
import time
start= time.time()
vocab, model = load_vocab_and_model(
vocab_path="./vocab/vocab_html.json",
max_seq_len=784,
model_weights=MODEL_DIR / MODEL_FILE_NAME[0],
)
end= time.time()
time1 = end-start
print("time to load structure model " + str(time1))
# Image transformation
image_tensor = image_to_tensor(image, size=(448, 448))
# Inference
start= time.time()
pred_html = autoregressive_decode(
model=model,
image=image_tensor,
prefix=[vocab.token_to_id("[html]")],
max_decode_len=512,
eos_id=vocab.token_to_id("<eos>"),
token_whitelist=[vocab.token_to_id(i) for i in VALID_HTML_TOKEN],
token_blacklist = None
)
end= time.time()
time1 = end-start
print("time to do structure inference" + str(time1))
# Convert token id to token text
pred_html = pred_html.detach().cpu().numpy()[0]
pred_html = vocab.decode(pred_html, skip_special_tokens=False)
pred_html = html_str_to_token_list(pred_html)
# print(pred_html)
# Table cell bbox detection
start= time.time()
vocab, model = load_vocab_and_model(
vocab_path="./vocab/vocab_bbox.json",
max_seq_len=1024,
model_weights=MODEL_DIR / MODEL_FILE_NAME[1],
)
end= time.time()
time1 = end-start
print("time to load cell bbox detection " + str(time1))
# Image transformation
image_tensor = image_to_tensor(image, size=(448, 448))
# Inference
start= time.time()
pred_bbox = autoregressive_decode(
model=model,
image=image_tensor,
prefix=[vocab.token_to_id("[bbox]")],
max_decode_len=1024,
eos_id=vocab.token_to_id("<eos>"),
token_whitelist=[vocab.token_to_id(i) for i in VALID_BBOX_TOKEN[: 449]],
token_blacklist = None
)
end= time.time()
time1 = end-start
print("time to do cell bbox detection " + str(time1))
# Convert token id to token text
pred_bbox = pred_bbox.detach().cpu().numpy()[0]
pred_bbox = vocab.decode(pred_bbox, skip_special_tokens=False)
# print(pred_bbox)
# Visualize detected bbox
pred_bbox = bbox_str_to_token_list(pred_bbox)
pred_bbox = rescale_bbox(pred_bbox, src=(448, 448), tgt=image_size)
fig, ax = plt.subplots(figsize=(12, 10))
for i in pred_bbox:
rect = patches.Rectangle(i[:2], i[2] - i[0], i[3] - i[1], linewidth=1, edgecolor='r', facecolor='none')
ax.add_patch(rect)
ax.set_axis_off()
ax.imshow(image)
# Table cell content recognition
start= time.time()
vocab, model = load_vocab_and_model(
vocab_path="./vocab/vocab_cell_6k.json",
max_seq_len=200,
model_weights=MODEL_DIR / MODEL_FILE_NAME[2],
)
end= time.time()
time1 = end-start
print("time to load cell content " + str(time1))
# Cell image cropping and transformation
image_tensor = [image_to_tensor(image.crop(bbox), size=(112, 448)) for bbox in pred_bbox]
image_tensor = torch.cat(image_tensor, dim=0)
start= time.time()
# Inference
pred_cell = autoregressive_decode(
model=model,
image=image_tensor,
prefix=[vocab.token_to_id("[cell]")],
max_decode_len=200,
eos_id=vocab.token_to_id("<eos>"),
token_whitelist=None,
token_blacklist = [vocab.token_to_id(i) for i in INVALID_CELL_TOKEN]
)
end= time.time()
time1 = end-start
print("time to do cell content " + str(time1))
# Convert token id to token text
pred_cell = pred_cell.detach().cpu().numpy()
pred_cell = vocab.decode_batch(pred_cell, skip_special_tokens=False)
pred_cell = [cell_str_to_token_list(i) for i in pred_cell]
pred_cell = [re.sub(r'(\d).\s+(\d)', r'\1.\2', i) for i in pred_cell]
# print(pred_cell)
# Combine the table structure and cell content
pred_code = build_table_from_html_and_cell(pred_html, pred_cell)
pred_code = "".join(pred_code)
pred_code = html_table_template(pred_code)
# Display the HTML table
soup = bs(pred_code)
table_code = soup.prettify()
# Raw HTML table code
print(table_code)