from typing import Tuple, List, Sequence, Optional, Union from torchvision import transforms from torch import nn, Tensor from PIL import Image from pathlib import Path from bs4 import BeautifulSoup as bs import numpy as np import numpy.typing as npt from numpy import uint8 ImageType = npt.NDArray[uint8] from transformers import AutoModelForObjectDetection import torch import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib.patches import Patch from unitable import UnitablePredictor from doctrfiles import DoctrWordDetector,DoctrTextRecognizer from utils import crop_an_Image,cropImageExtraMargin from utils import denoisingAndSharpening #based on this notebook:https://github.com/NielsRogge/Transformers-Tutorials/blob/master/Table%20Transformer/Inference_with_Table_Transformer_(TATR)_for_parsing_tables.ipynb class MaxResize(object): def __init__(self, max_size=800): self.max_size = max_size def __call__(self, image): width, height = image.size current_max_size = max(width, height) scale = self.max_size / current_max_size resized_image = image.resize((int(round(scale*width)), int(round(scale*height)))) return resized_image html_table_template = ( lambda table: f""" {table}
""" ) class DetectionAndOcrTable1(): def __init__(self,englishFlag=True): self.unitablePredictor = UnitablePredictor() self.wordDetector = DoctrWordDetector(architecture="db_resnet50", path_weights="doctrfiles/models/db_resnet50-79bd7d70.pt", path_config_json ="doctrfiles/models/db_resnet50_config.json") if englishFlag: self.textRecognizer = DoctrTextRecognizer(architecture="master", path_weights="./doctrfiles/models/master-fde31e4a.pt", path_config_json="./doctrfiles/models/master.json") else: self.textRecognizer = DoctrTextRecognizer(architecture="parseq", path_weights="./doctrfiles/models/doctr-multilingual-parseq.bin", path_config_json="./doctrfiles/models/multilingual-parseq-config.json") @staticmethod def build_table_from_html_and_cell( structure: List[str], content: List[str] = None ) -> List[str]: """Build table from html and cell token list""" assert structure is not None html_code = list() # deal with empty table if content is None: content = ["placeholder"] * len(structure) for tag in structure: if tag in ("[]", ">[]"): if len(content) == 0: continue cell = content.pop(0) html_code.append(tag.replace("[]", cell)) else: html_code.append(tag) return html_code @staticmethod def save_detection(detected_lines_images:List[ImageType], prefix = './res/test1/res_'): i = 0 for img in detected_lines_images: pilimg = Image.fromarray(img) pilimg.save(prefix+str(i)+'.png') i=i+1 @staticmethod # for output bounding box post-processing def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=1) @staticmethod def rescale_bboxes(out_bbox, size): img_w, img_h = size b = DetectionAndOcrTable1.box_cxcywh_to_xyxy(out_bbox) b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32) return b @staticmethod def outputs_to_objects(outputs, img_size, id2label): m = outputs.logits.softmax(-1).max(-1) pred_labels = list(m.indices.detach().cpu().numpy())[0] pred_scores = list(m.values.detach().cpu().numpy())[0] pred_bboxes = outputs['pred_boxes'].detach().cpu()[0] pred_bboxes = [elem.tolist() for elem in DetectionAndOcrTable1.rescale_bboxes(pred_bboxes, img_size)] objects = [] for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes): class_label = id2label[int(label)] if not class_label == 'no object': objects.append({'label': class_label, 'score': float(score), 'bbox': [float(elem) for elem in bbox]}) return objects @staticmethod def fig2img(fig): """Convert a Matplotlib figure to a PIL Image and return it""" import io buf = io.BytesIO() fig.savefig(buf) buf.seek(0) img = Image.open(buf) return img #For that, the TATR authors employ some padding to make sure the borders of the table are included. @staticmethod def objects_to_crops(img, tokens, objects, class_thresholds, padding=10): """ Process the bounding boxes produced by the table detection model into cropped table images and cropped tokens. """ table_crops = [] for obj in objects: # abit unecessary here cause i crop them anywyas if obj['score'] < class_thresholds[obj['label']]: continue cropped_table = {} bbox = obj['bbox'] bbox = [bbox[0]-padding, bbox[1]-padding, bbox[2]+padding, bbox[3]+padding] cropped_img = img.crop(bbox) # Add padding to the cropped image padded_width = cropped_img.width + 40 padded_height = cropped_img.height +40 new_img_np = np.full((padded_height, padded_width, 3), fill_value=255, dtype=np.uint8) y_offset = (padded_height - cropped_img.height) // 2 x_offset = (padded_width - cropped_img.width) // 2 new_img_np[y_offset:y_offset + cropped_img.height, x_offset:x_offset+cropped_img.width] = np.array(cropped_img) padded_img = Image.fromarray(new_img_np,'RGB') table_tokens = [token for token in tokens if iob(token['bbox'], bbox) >= 0.5] for token in table_tokens: token['bbox'] = [token['bbox'][0]-bbox[0] + padding, token['bbox'][1]-bbox[1] + padding, token['bbox'][2]-bbox[0] + padding, token['bbox'][3]-bbox[1] + padding] # If table is predicted to be rotated, rotate cropped image and tokens/words: if obj['label'] == 'table rotated': padded_img = padded_img.rotate(270, expand=True) for token in table_tokens: bbox = token['bbox'] bbox = [padded_img.size[0]-bbox[3]-1, bbox[0], padded_img.size[0]-bbox[1]-1, bbox[2]] token['bbox'] = bbox cropped_table['image'] = padded_img cropped_table['tokens'] = table_tokens table_crops.append(cropped_table) return table_crops @staticmethod def visualize_detected_tables(img, det_tables, out_path=None): plt.imshow(img, interpolation="lanczos") fig = plt.gcf() fig.set_size_inches(20, 20) ax = plt.gca() for det_table in det_tables: bbox = det_table['bbox'] if det_table['label'] == 'table': facecolor = (1, 0, 0.45) edgecolor = (1, 0, 0.45) alpha = 0.3 linewidth = 2 hatch='//////' elif det_table['label'] == 'table rotated': facecolor = (0.95, 0.6, 0.1) edgecolor = (0.95, 0.6, 0.1) alpha = 0.3 linewidth = 2 hatch='//////' else: continue rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth, edgecolor='none',facecolor=facecolor, alpha=0.1) ax.add_patch(rect) rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth, edgecolor=edgecolor,facecolor='none',linestyle='-', alpha=alpha) ax.add_patch(rect) rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=0, edgecolor=edgecolor,facecolor='none',linestyle='-', hatch=hatch, alpha=0.2) ax.add_patch(rect) plt.xticks([], []) plt.yticks([], []) legend_elements = [Patch(facecolor=(1, 0, 0.45), edgecolor=(1, 0, 0.45), label='Table', hatch='//////', alpha=0.3), Patch(facecolor=(0.95, 0.6, 0.1), edgecolor=(0.95, 0.6, 0.1), label='Table (rotated)', hatch='//////', alpha=0.3)] plt.legend(handles=legend_elements, bbox_to_anchor=(0.5, -0.02), loc='upper center', borderaxespad=0, fontsize=10, ncol=2) plt.gcf().set_size_inches(10, 10) plt.axis('off') if out_path is not None: plt.savefig(out_path, bbox_inches='tight', dpi=150) return fig def predict(self,image:Image.Image,debugfolder_filename_page_name,denoise=False): """ 0. Locate the table using Table detection 1. Unitable """ print("Running table transformer + Unitable Hybrid Model") # Step 0 : Locate the table using Table detection TODO #First we load a Table Transformer pre-trained for table detection. We use the "no_timm" version here to load the checkpoint with a Transformers-native backbone. model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm") device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) #Preparing the image for the model detection_transform = transforms.Compose([ MaxResize(800), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) pixel_values = detection_transform(image).unsqueeze(0) pixel_values = pixel_values.to(device) # Next, we forward the pixel values through the model. # The model outputs logits of shape (batch_size, num_queries, num_labels + 1). The +1 is for the "no object" class. with torch.no_grad(): outputs = model(pixel_values) # update id2label to include "no object" id2label = model.config.id2label id2label[len(model.config.id2label)] = "no object" #[{'label': 'table', 'score': 0.9999570846557617, 'bbox': [110.24547576904297, 73.31171417236328, 1024.609130859375, 308.7159423828125]}] objects = DetectionAndOcrTable1.outputs_to_objects(outputs, image.size, id2label) #Only do these for objects with score greater than 0.8 objects = [obj for obj in objects if obj['score'] > 0.95] print("detected object from the table transformers are") print(objects) if objects: #Next, we crop the table out of the image. For that, the TATR authors employ some padding to make sure the borders of the table are included. tokens = [] detection_class_thresholds = { "table": 0.95, #this is a bit double cause we do up there another filtering but didn't want to modify too much from original code "table rotated": 0.95, "no object": 10 } crop_padding = 10 tables_crops = DetectionAndOcrTable1.objects_to_crops(image, tokens, objects, detection_class_thresholds, padding=crop_padding) cropped_tables =[] for i in range (len(tables_crops)): cropped_table = tables_crops[i]['image'].convert("RGB") cropped_table.save(debugfolder_filename_page_name+"cropped_table_"+str(i)+".png") cropped_tables.append(cropped_table) # Step 1: Unitable #This take PIL Images as input if denoise: cropped_tables =denoisingAndSharpening(cropped_tables) pred_htmls, pred_bboxs = self.unitablePredictor.predict(cropped_tables,debugfolder_filename_page_name) table_codes = [] for k in range(len(cropped_tables)): pred_html =pred_htmls[k] pred_bbox = pred_bboxs[k] # Some tabless have a lot of words in their header # So for the headers, give doctr word ddetector doesn't work when the images aren't square table_header_cells = 0 header_exists = False for cell in pred_html: if cell=='>[]' or cell == '[]': table_header_cells += 1 if cell =='': header_exists = True break if not header_exists: table_header_cells = 0 pred_cell = [] cell_imgs_to_viz = [] cell_img_num=0 # Find what one line should be if there is a cell with a single line one_line_height = 100000 for i in range(table_header_cells): box = pred_bbox[i] xmin, ymin, xmax, ymax = box current_box_height = abs(ymax-ymin) if current_box_height 0 and current_box_height>one_line_height+5: cell_img= cropImageExtraMargin([fourbytwo],cropped_tables[k],margin=1.4)[0] table_header_cells -= 1 #List of 4 x 2 detection_results = self.wordDetector.predict(cell_img,sort_vertical=True) input_to_recog = [] if detection_results == []: input_to_recog.append(cell_img) else: for wordbox in detection_results: cropped_image= crop_an_Image(wordbox.box,cell_img) if cropped_image.shape[0] >0 and cropped_image.shape[1]>0: input_to_recog.append(cropped_image) else: print("Empty image") else: cell_img = crop_an_Image(fourbytwo,cropped_tables[k]) if table_header_cells>0: table_header_cells -= 1 if cell_img.shape[0] >0 and cell_img.shape[1]>0: input_to_recog =[cell_img] cell_imgs_to_viz.append(cell_img) if input_to_recog != []: words = self.textRecognizer.predict_for_tables(input_to_recog) cell_output = " ".join(words) pred_cell.append(cell_output) else: #Don't lose empty cell pred_cell.append("") print(pred_cell) #Step3 : pred_code = self.build_table_from_html_and_cell(pred_html, pred_cell) pred_code = "".join(pred_code) pred_code = html_table_template(pred_code) soup = bs(pred_code) #formatted and indented) string representation of the HTML document table_code = soup.prettify() print(table_code) # Append extracted table to table_codes table_codes.append(table_code) return table_codes