from typing import List, Tuple, Set, Dict from huggingface_hub import hf_hub_download import re from PIL import Image from transformers import NougatProcessor, VisionEncoderDecoderModel from datasets import load_dataset import torch from doctrfiles import DetectionResult # Numpy image type import numpy.typing as npt from numpy import uint8 ImageType = npt.NDArray[uint8] def run_nougat(inputs: List[Tuple[int, ImageType]])-> List[DetectionResult]: processor = NougatProcessor.from_pretrained("facebook/nougat-base") model = VisionEncoderDecoderModel.from_pretrained("facebook/nougat-base") device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) detection_results =[] for index, np_img in inputs: image = Image.fromarray(np_img) pixel_values = processor(image, return_tensors="pt").pixel_values # generate transcription (here we only generate 30 tokens) outputs = model.generate( pixel_values.to(device), min_length=1, max_new_tokens=30, bad_words_ids=[[processor.tokenizer.unk_token_id]], ) sequence = processor.batch_decode(outputs, skip_special_tokens=True)[0] sequence = processor.post_process_generation(sequence, fix_markdown=False) # note: we're using repr here such for the sake of printing the \n characters, feel free to just print the sequence text = sequence detection_results.append(DetectionResult(score=1, text=text, index=index)) return detection_results