yunquan's picture
Update app.py
53be099 verified
raw
history blame
4.36 kB
import gradio as gr
import numpy as np
import random
from diffusers import StableDiffusionPipeline
import torch
import os
import logging
logging.basicConfig(level=logging.INFO)
# Retrieve Hugging Face access token from environment variables
access_token = os.getenv("HF_ACCESS_TOKEN")
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the Stable Diffusion model
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-3-medium",
torch_dtype=torch.float16,
use_auth_token=access_token # Use the token here
)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = StableDiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-3-medium",
use_auth_token=access_token # Use the token here
)
pipe = pipe.to(device)
logging.info("Loading the model...")
# Load model
logging.info("Model loaded successfully.")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return image
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
power_device = "GPU" if torch.cuda.is_available() else "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Gradio Template
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=12,
step=1,
value=2,
)
gr.Examples(
examples=examples,
inputs=[prompt]
)
run_button.click(
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result]
)
demo.queue().launch()