yunquan commited on
Commit
1d944c8
·
verified ·
1 Parent(s): ea4a9f3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -38
app.py CHANGED
@@ -1,39 +1,50 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
- from diffusers import DiffusionPipeline
5
  import torch
 
6
 
 
 
 
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
 
9
  if torch.cuda.is_available():
10
  torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
 
 
 
 
12
  pipe.enable_xformers_memory_efficient_attention()
13
  pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
 
 
 
16
  pipe = pipe.to(device)
17
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
  MAX_IMAGE_SIZE = 1024
20
 
21
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
-
23
  if randomize_seed:
24
  seed = random.randint(0, MAX_SEED)
25
-
26
  generator = torch.Generator().manual_seed(seed)
27
-
28
  image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
 
38
  return image
39
 
@@ -43,20 +54,16 @@ examples = [
43
  "A delicious ceviche cheesecake slice",
44
  ]
45
 
46
- css="""
47
  #col-container {
48
  margin: 0 auto;
49
  max-width: 520px;
50
  }
51
  """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
 
58
  with gr.Blocks(css=css) as demo:
59
-
60
  with gr.Column(elem_id="col-container"):
61
  gr.Markdown(f"""
62
  # Text-to-Image Gradio Template
@@ -64,28 +71,24 @@ with gr.Blocks(css=css) as demo:
64
  """)
65
 
66
  with gr.Row():
67
-
68
- prompt = gr.Text(
69
  label="Prompt",
70
  show_label=False,
71
  max_lines=1,
72
  placeholder="Enter your prompt",
73
  container=False,
74
  )
75
-
76
  run_button = gr.Button("Run", scale=0)
77
 
78
  result = gr.Image(label="Result", show_label=False)
79
 
80
  with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
  label="Negative prompt",
84
  max_lines=1,
85
  placeholder="Enter a negative prompt",
86
  visible=False,
87
  )
88
-
89
  seed = gr.Slider(
90
  label="Seed",
91
  minimum=0,
@@ -93,11 +96,9 @@ with gr.Blocks(css=css) as demo:
93
  step=1,
94
  value=0,
95
  )
96
-
97
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
 
99
  with gr.Row():
100
-
101
  width = gr.Slider(
102
  label="Width",
103
  minimum=256,
@@ -105,7 +106,6 @@ with gr.Blocks(css=css) as demo:
105
  step=32,
106
  value=512,
107
  )
108
-
109
  height = gr.Slider(
110
  label="Height",
111
  minimum=256,
@@ -115,7 +115,6 @@ with gr.Blocks(css=css) as demo:
115
  )
116
 
117
  with gr.Row():
118
-
119
  guidance_scale = gr.Slider(
120
  label="Guidance scale",
121
  minimum=0.0,
@@ -123,7 +122,6 @@ with gr.Blocks(css=css) as demo:
123
  step=0.1,
124
  value=0.0,
125
  )
126
-
127
  num_inference_steps = gr.Slider(
128
  label="Number of inference steps",
129
  minimum=1,
@@ -133,14 +131,14 @@ with gr.Blocks(css=css) as demo:
133
  )
134
 
135
  gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
  )
139
 
140
  run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
  )
145
 
146
- demo.queue().launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
+ from diffusers import StableDiffusionPipeline
5
  import torch
6
+ import os
7
 
8
+ # Retrieve Hugging Face access token from environment variables
9
+ access_token = os.getenv("HF_ACCESS_TOKEN")
10
+
11
+ # Set device
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
13
 
14
+ # Load the Stable Diffusion model
15
  if torch.cuda.is_available():
16
  torch.cuda.max_memory_allocated(device=device)
17
+ pipe = StableDiffusionPipeline.from_pretrained(
18
+ "stabilityai/stable-diffusion-3-medium",
19
+ torch_dtype=torch.float16,
20
+ use_auth_token=access_token # Use the token here
21
+ )
22
  pipe.enable_xformers_memory_efficient_attention()
23
  pipe = pipe.to(device)
24
+ else:
25
+ pipe = StableDiffusionPipeline.from_pretrained(
26
+ "stabilityai/stable-diffusion-3-medium",
27
+ use_auth_token=access_token # Use the token here
28
+ )
29
  pipe = pipe.to(device)
30
 
31
  MAX_SEED = np.iinfo(np.int32).max
32
  MAX_IMAGE_SIZE = 1024
33
 
34
  def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
35
  if randomize_seed:
36
  seed = random.randint(0, MAX_SEED)
 
37
  generator = torch.Generator().manual_seed(seed)
38
+
39
  image = pipe(
40
+ prompt=prompt,
41
+ negative_prompt=negative_prompt,
42
+ guidance_scale=guidance_scale,
43
+ num_inference_steps=num_inference_steps,
44
+ width=width,
45
+ height=height,
46
+ generator=generator
47
+ ).images[0]
48
 
49
  return image
50
 
 
54
  "A delicious ceviche cheesecake slice",
55
  ]
56
 
57
+ css = """
58
  #col-container {
59
  margin: 0 auto;
60
  max-width: 520px;
61
  }
62
  """
63
 
64
+ power_device = "GPU" if torch.cuda.is_available() else "CPU"
 
 
 
65
 
66
  with gr.Blocks(css=css) as demo:
 
67
  with gr.Column(elem_id="col-container"):
68
  gr.Markdown(f"""
69
  # Text-to-Image Gradio Template
 
71
  """)
72
 
73
  with gr.Row():
74
+ prompt = gr.Textbox(
 
75
  label="Prompt",
76
  show_label=False,
77
  max_lines=1,
78
  placeholder="Enter your prompt",
79
  container=False,
80
  )
 
81
  run_button = gr.Button("Run", scale=0)
82
 
83
  result = gr.Image(label="Result", show_label=False)
84
 
85
  with gr.Accordion("Advanced Settings", open=False):
86
+ negative_prompt = gr.Textbox(
 
87
  label="Negative prompt",
88
  max_lines=1,
89
  placeholder="Enter a negative prompt",
90
  visible=False,
91
  )
 
92
  seed = gr.Slider(
93
  label="Seed",
94
  minimum=0,
 
96
  step=1,
97
  value=0,
98
  )
 
99
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
100
 
101
  with gr.Row():
 
102
  width = gr.Slider(
103
  label="Width",
104
  minimum=256,
 
106
  step=32,
107
  value=512,
108
  )
 
109
  height = gr.Slider(
110
  label="Height",
111
  minimum=256,
 
115
  )
116
 
117
  with gr.Row():
 
118
  guidance_scale = gr.Slider(
119
  label="Guidance scale",
120
  minimum=0.0,
 
122
  step=0.1,
123
  value=0.0,
124
  )
 
125
  num_inference_steps = gr.Slider(
126
  label="Number of inference steps",
127
  minimum=1,
 
131
  )
132
 
133
  gr.Examples(
134
+ examples=examples,
135
+ inputs=[prompt]
136
  )
137
 
138
  run_button.click(
139
+ fn=infer,
140
+ inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
141
+ outputs=[result]
142
  )
143
 
144
+ demo.queue().launch()