import gradio as gr import numpy as np import random from diffusers import StableDiffusionPipeline import torch import os import logging # Setup logging logging.basicConfig(level=logging.INFO) # Retrieve Hugging Face access token from environment variables access_token = os.getenv("HF_ACCESS_TOKEN") # Set device device = "cuda" if torch.cuda.is_available() else "cpu" # Global variable for the pipeline pipe = None def load_model(): global pipe if pipe is None: try: logging.info("Loading the Stable Diffusion model...") pipe = StableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-3-medium", torch_dtype=torch.float16, use_auth_token=access_token, cache_dir="/path/to/cache" # specify cache directory if needed ) pipe = pipe.to(device) logging.info("Model loaded successfully.") except Exception as e: logging.error(f"Failed to load model: {e}") pipe = None MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): load_model() # Ensure the model is loaded if pipe is None: raise RuntimeError("Model failed to load.") if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator ).images[0] return image examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 520px; } """ power_device = "GPU" if torch.cuda.is_available() else "CPU" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Text-to-Image Gradio Template Currently running on {power_device}. """) with gr.Row(): prompt = gr.Textbox( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Textbox( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=12, step=1, value=2, ) gr.Examples( examples=examples, inputs=[prompt] ) run_button.click( fn=infer, inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result] ) demo.queue().launch()