File size: 1,382 Bytes
02df9f8
 
 
 
9bfa66b
02df9f8
 
 
 
9bfa66b
02df9f8
 
 
 
 
 
 
 
 
9bfa66b
 
 
02df9f8
 
 
 
9bfa66b
 
 
 
 
02df9f8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import spaces
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = 'yuntian-deng/gpt2-implicit-cot-multiplication'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

def preprocess(num):
    num = str(num).strip().replace(' ', '')
    reversed_num = ' '.join(num[::-1])
    return reversed_num

@spaces.GPU
def predict_product(num1, num2):
    input_text = f'{preprocess(num1)} * {preprocess(num2)} ='
    inputs = tokenizer(input_text, return_tensors='pt').to('cuda' if torch.cuda.is_available() else 'cpu')
    model.to('cuda' if torch.cuda.is_available() else 'cpu')
    outputs = model.generate(**inputs, max_new_tokens=40)
    raw_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
    prediction = raw_output.strip().replace(' ', '')[::-1]
    return input_text, raw_output, prediction

demo = gr.Interface(
    fn=predict_product,
    inputs=[gr.Number(label='First Number (up to 9 digits)'), gr.Number(label='Second Number (up to 9 digits)')],
    outputs=[
        gr.Textbox(label='Raw Input to GPT-2'),
        gr.Textbox(label='Raw Output from GPT-2'),
        gr.Textbox(label='Predicted Product')
    ],
    title='GPT-2 Multiplication Predictor',
    description='Enter two numbers up to 9 digits each and get the predicted product.'
)

demo.launch()