File size: 7,030 Bytes
02df9f8
5c3cea5
02df9f8
 
 
9a65236
 
 
 
 
 
 
 
 
 
 
3f8feaa
9a65236
 
 
02df9f8
 
9bfa66b
02df9f8
 
 
9428a07
 
 
 
02df9f8
 
 
 
9a65236
39a2dae
bf65d9e
 
f7dc2d2
9a65236
f7dc2d2
8fa0ae4
70487ef
 
 
9a65236
 
70487ef
f7dc2d2
eaa0586
9a65236
 
 
d8750b1
9a65236
 
d8750b1
 
9a65236
 
 
 
 
dde88b9
9a65236
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad4fc9e
 
 
 
9a65236
 
 
 
0ad2aca
d8750b1
9a65236
 
 
 
 
 
 
 
 
bf65d9e
9a65236
 
 
 
 
 
 
d8750b1
bf65d9e
d8750b1
 
 
f7dc2d2
d8750b1
 
 
eaa0586
d8750b1
02df9f8
cf0cf7e
 
02df9f8
 
3f861c3
a16dab3
 
3f861c3
9bfa66b
9a65236
 
 
 
9bfa66b
1efd23b
 
9428a07
 
 
 
8fa0ae4
486c21f
 
6cc23f5
02df9f8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import spaces
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load models
implicit_cot_model_name = 'yuntian-deng/gpt2-implicit-cot-multiplication'
implicit_cot_model = AutoModelForCausalLM.from_pretrained(implicit_cot_model_name)
tokenizer = AutoTokenizer.from_pretrained(implicit_cot_model_name)

no_cot_model_name = 'yuntian-deng/gpt2-no-cot-multiplication'
no_cot_model = AutoModelForCausalLM.from_pretrained(no_cot_model_name)

explicit_cot_model_name = 'yuntian-deng/gpt2-explicit-cot-multiplication'
explicit_cot_model = AutoModelForCausalLM.from_pretrained(explicit_cot_model_name)

models = {'implicit': implicit_cot_model, 'no': no_cot_model, 'explicit': explicit_cot_model}

# Constants
MAX_PRODUCT_DIGITS_PER_MODEL = {'implicit': 100, 'no': 100, 'explicit': 900}

def preprocess(num):
    num = str(num).strip().replace(' ', '')
    reversed_num = ' '.join(num[::-1])
    return reversed_num

def postprocess(raw_output):
    prediction = raw_output.replace(' ', '')[::-1]
    return prediction

@spaces.GPU
def predict_product(num1, num2):
    input_text = f'{preprocess(num1)} * {preprocess(num2)} ='
    inputs = tokenizer(input_text, return_tensors='pt').to('cuda' if torch.cuda.is_available() else 'cpu')
    [model.to('cuda' if torch.cuda.is_available() else 'cpu') for model in models.values()]

    input_ids = inputs['input_ids']
    input_len = input_ids.shape[-1]
    prediction = ""
    ground_truth_product = ""
    valid_input = True

    try:
        num1_int = int(num1)
        num2_int = int(num2)
        ground_truth_product = str(num1_int * num2_int)
        ground_truth_digits_reversed = list(ground_truth_product)[::-1]
    except ValueError:
        valid_input = False

    generated_ids_per_model = {model_name: inputs['input_ids'].data.clone() for model_name in models}
    finished_per_model = {model_name: False for model_name in models}
    past_key_values_per_model = {model_name: None for model_name in models}
    predicted_annotations_per_model = {}
    for step in range(max(MAX_PRODUCT_DIGITS_PER_MODEL.values())):  # Set a maximum limit to prevent infinite loops
        # Ground Truth
        ground_truth_annotations = [(ground_truth_digit, None) for ground_truth_digit in ground_truth_digits_reversed[:step+1]]
        ground_truth_annotations = ground_truth_annotations[::-1]
        # Predicted
        for model_name in models:
            model = models[model_name]
            if finished_per_model[model_name]:
                continue
            if step >= MAX_PRODUCT_DIGITS_PER_MODEL[model_name]:
                continue
            generation_kwargs = {
                'input_ids': generated_ids_per_model[model_name],
                'max_new_tokens': 1,
                'do_sample': False,
                'past_key_values': past_key_values_per_model[model_name],
                'return_dict_in_generate': True,
                'use_cache': True
            }
            if step == 0:
                del generation_kwargs['past_key_values']
            outputs = model.generate(**generation_kwargs)
            generated_ids = outputs.sequences
            next_token_id = generated_ids[0, -1]
            print (next_token_id)
            
            if next_token_id.item() == tokenizer.eos_token_id:
                finished_per_model[model_name] = True
                continue
                
            generated_ids_per_model[model_name] = generated_ids
            past_key_values_per_model[model_name] = outputs.past_key_values
            
            output_text = tokenizer.decode(generated_ids[0, input_len:], skip_special_tokens=True)
            predicted_digits_reversed = output_text.strip().split(' ')
        
            predicted_annotations = []
            is_correct_sofar = True
            for i in range(len(predicted_digits_reversed)):
                predicted_digit = predicted_digits_reversed[i]
                ground_truth_digit = ground_truth_digits_reversed[i]
                if i >= len(ground_truth_digits_reversed):
                    if predicted_digit == '0' and is_correct_sofar:
                        is_correct_digit = True
                    else:
                        is_correct_digit = False
                else:
                    if predicted_digit == ground_truth_digit:
                        is_correct_digit = True
                    else:
                        is_correct_digit = False
                if not is_correct_digit:
                    is_correct_sofar = False
                if is_correct_digit:
                    predicted_annotations.append((predicted_digit, "correct"))
                else:
                    predicted_annotations.append((predicted_digit, "wrong"))
            predicted_annotations = predicted_annotations[::-1]
            predicted_annotations_per_model[model_name] = predicted_annotations

        predicted_annotations_implicit_cot = predicted_annotations_per_model['implicit']
        predicted_annotations_nocot = predicted_annotations_per_model['no']
        predicted_annotations_explicit_cot = predicted_annotations_per_model['explicit']

        yield ground_truth_annotations, predicted_annotations_implicit_cot, predicted_annotations_nocot, predicted_annotations_explicit_cot

color_map = {"correct": "green", "wrong": "red"}

demo = gr.Interface(
    fn=predict_product,
    inputs=[
        gr.Textbox(label='First Number (up to 12 digits)', value='123456789'),
        gr.Textbox(label='Second Number (up to 12 digits)', value='987654321'),
    ],
    outputs=[
        gr.HighlightedText(label='Ground Truth Product', combine_adjacent=False, show_legend=False, color_map=color_map),
        gr.HighlightedText(label='Implicit CoT Predicted Product', combine_adjacent=False, show_legend=False, color_map=color_map, show_inline_category=False),
        gr.HighlightedText(label='No CoT Predicted Product', combine_adjacent=False, show_legend=False, color_map=color_map, show_inline_category=False),
        gr.HighlightedText(label='Explicit CoT Predicted Product', combine_adjacent=False, show_legend=False, color_map=color_map, show_inline_category=False),
    ],
    title='GPT2 Direct Multiplication Calculator (Without Using Chain-of-Thought)',
    description='This demo uses GPT2 to directly predict the product of two numbers without using any intermediate reasoning steps. The GPT2 model has been fine-tuned to internalize chain-of-thought reasoning within its hidden states, following our stepwise internalization approach detailed in the paper linked at the bottom of this page.',
    article="""
    - [Paper: From Explicit CoT to Implicit CoT: Learning to Internalize CoT Step by Step](https://arxiv.org/pdf/2405.14838)
    - [Code Repository](https://github.com/da03/Internalize_CoT_Step_by_Step)
    - [Tweet Announcement](https://twitter.com/yuntiandeng/status/1795854740879774036)
    """,
    clear_btn=None,
    submit_btn="Multiply!",
    live=False
)

demo.launch()