da03
.
685026a
raw
history blame
3.41 kB
import spaces
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = 'yuntian-deng/gpt2-implicit-cot-multiplication'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
def preprocess(num):
num = str(num).strip().replace(' ', '')
reversed_num = ' '.join(num[::-1])
return reversed_num
def postprocess(raw_output):
prediction = raw_output.replace(' ', '')[::-1]
return prediction
@spaces.GPU
def predict_product(num1, num2):
input_text = f'{preprocess(num1)} * {preprocess(num2)} ='
inputs = tokenizer(input_text, return_tensors='pt').to('cuda' if torch.cuda.is_available() else 'cpu')
model.to('cuda' if torch.cuda.is_available() else 'cpu')
generated_ids = inputs['input_ids']
outputs = model.generate(generated_ids, max_new_tokens=40, do_sample=False)
full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
prediction = postprocess(full_output[len(input_text):])
try:
num1_int = int(num1)
num2_int = int(num2)
correct_product = str(num1_int * num2_int)
except ValueError:
return [], "Invalid input. Could not evaluate correctness."
# Create the diff for HighlightedText
diff = []
max_len = max(len(prediction), len(correct_product))
for i in range(max_len):
if i < len(prediction) and i < len(correct_product) and prediction[i] == correct_product[i]:
diff.append((prediction[i], None)) # No highlight for correct digits
elif i < len(prediction) and (i >= len(correct_product) or prediction[i] != correct_product[i]):
diff.append((prediction[i], "+")) # Highlight incorrect digits in red
if i < len(correct_product) and (i >= len(prediction) or prediction[i] != correct_product[i]):
diff.append((correct_product[i], "-")) # Highlight missing/incorrect digits in green
result_message = "Correct!" if prediction == correct_product else f"Incorrect! The correct product is {correct_product}."
return diff, result_message
demo = gr.Interface(
fn=predict_product,
inputs=[
gr.Textbox(label='First Number (up to 12 digits)', value='12345'),
gr.Textbox(label='Second Number (up to 12 digits)', value='67890'),
],
outputs=[
gr.HighlightedText(label='Predicted Product with Matching and Unmatching Digits Highlighted', combine_adjacent=True, show_legend=True, color_map={"-": "green", "+": "red"}),
gr.HTML(label='Result Message')
],
title='GPT2 Direct Multiplication Calculator (Without Using Chain-of-Thought)',
description='This demo uses GPT2 to directly predict the product of two numbers without using any intermediate reasoning steps. The GPT2 model has been fine-tuned to internalize chain-of-thought reasoning within its hidden states, following our stepwise internalization approach detailed in the paper linked at the bottom of this page.',
article="""
- [Paper: From Explicit CoT to Implicit CoT: Learning to Internalize CoT Step by Step](https://arxiv.org/pdf/2405.14838)
- [Code Repository](https://github.com/da03/Internalize_CoT_Step_by_Step)
- [Tweet Announcement](https://twitter.com/yuntiandeng/status/1795854740879774036)
""",
clear_btn=None,
submit_btn="Multiply!",
live=False
)
demo.launch()