Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,082 Bytes
02df9f8 5c3cea5 02df9f8 d87049c 9a65236 d87049c 9428a07 02df9f8 d87049c 02df9f8 d87049c 39a2dae bf65d9e d87049c fe5b36f 15cb83f f7dc2d2 d87049c 02df9f8 cf0cf7e 02df9f8 d87049c 3f861c3 d87049c 3f861c3 9bfa66b 137d14f 9bfa66b d87049c 85fafa0 b8ed883 85fafa0 486c21f d87049c ebf0fc0 02df9f8 d87049c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import spaces
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the implicit CoT model
implicit_cot_model_name = 'yuntian-deng/implicit-cot-math-mistral7b'
implicit_cot_model = AutoModelForCausalLM.from_pretrained(implicit_cot_model_name, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(implicit_cot_model_name)
# Constants
MAX_RESULT_TOKENS = 10
@spaces.GPU
def predict_answer(question):
input_text = ' '.join(question.split()).strip() + ' ' + tokenizer.eos_token
inputs = tokenizer(input_text, return_tensors='pt').to('cuda' if torch.cuda.is_available() else 'cpu')
implicit_cot_model.to('cuda' if torch.cuda.is_available() else 'cpu')
input_ids = inputs['input_ids']
outputs = implicit_cot_model.generate(input_ids=input_ids,
max_new_tokens=MAX_RESULT_TOKENS,
do_sample=False)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True)
return prediction
demo = gr.Interface(
fn=predict_answer,
inputs=[
gr.Textbox(label='Question', value='A set of 7 spoons costs $21. If each spoon would be sold separately, how much would 5 spoons cost?'),
],
outputs=[
gr.Textbox(label='Implicit CoT Prediction'),
],
title='Solving Grade School Math Problems with Implicit CoT',
description='This demo showcases Mistral-7B\'s ability to solve grade school math problems without producing intermediate steps, using our stepwise internalization method.',
article="""
- [Paper 1: Implicit Chain of Thought Reasoning via Knowledge Distillation](https://arxiv.org/pdf/2311.01460)
- [Paper 2: From Explicit CoT to Implicit CoT: Learning to Internalize CoT Step by Step](https://arxiv.org/pdf/2405.14838)
- [Code Repository](https://github.com/da03/Internalize_CoT_Step_by_Step)
- [Tweet Announcement](https://twitter.com/yuntiandeng/status/1795854740879774036)
""",
clear_btn=None,
submit_btn="Get Answer!",
live=False,
concurrency_limit=1
)
demo.queue(max_size=5).launch()
|