Spaces:
Runtime error
Runtime error
import os.path | |
from google.auth.transport.requests import Request | |
from google.oauth2.credentials import Credentials | |
from google_auth_oauthlib.flow import InstalledAppFlow | |
from googleapiclient.discovery import build | |
import pandas as pd | |
# If modifying these scopes, delete the file token.json. | |
SCOPES = ["https://www.googleapis.com/auth/spreadsheets"] | |
# The ID and range of a sample spreadsheet. | |
# SAMPLE_SPREADSHEET_ID = "1Z3doUDpoUmXs7p4-g7f8q3XZIBhH_Lz2w51bnpUFigw" | |
SAMPLE_SPREADSHEET_ID = "1NJGhpMsfUySHJcMBNpLTEnt-r5Co6qwRahenIa9D55k" | |
SERVICE = None | |
MAX_ROW = 100 | |
QUESTIONS = None | |
def get_range(range_name: str) -> list[list[str]]: | |
sheet = SERVICE.spreadsheets() | |
result = ( | |
sheet.values() | |
.get( | |
spreadsheetId=SAMPLE_SPREADSHEET_ID, | |
range=range_name | |
) | |
.execute() | |
) | |
values = result.get("values", []) | |
return values | |
def load_google_sheets(): | |
global SERVICE, QUESTIONS | |
"""Shows basic usage of the Sheets API. | |
Prints values from a sample spreadsheet. | |
""" | |
creds = None | |
# The file token.json stores the user's access and refresh tokens, and is | |
# created automatically when the authorization flow completes for the first | |
# time. | |
if os.path.exists("token.json"): | |
creds = Credentials.from_authorized_user_file("token.json", SCOPES) | |
# If there are no (valid) credentials available, let the user log in. | |
if not creds or not creds.valid: | |
if creds and creds.expired and creds.refresh_token: | |
creds.refresh(Request()) | |
else: | |
flow = InstalledAppFlow.from_client_secrets_file( | |
"credentials.json", SCOPES | |
) | |
creds = flow.run_local_server(port=0) | |
# Save the credentials for the next run | |
with open("token.json", "w") as token: | |
token.write(creds.to_json()) | |
SERVICE = build("sheets", "v4", credentials=creds) | |
QUESTIONS = pd.DataFrame(get_range(f"Responses!B1:F1"), columns=["Q1", "Q2", "Q3", "Q4", "Q5"]) | |
def get_team_numbers() -> list[str]: | |
values = get_range(f"Responses!I2:I{MAX_ROW}") | |
return [int(value[0]) for value in values] | |
def get_questions_and_answers() -> pd.DataFrame: | |
columns = ["Q1", "Q2", "Q3", "Q4", "Q5", "Q6", "Q7", "team_number", "email_address", "name"] | |
answers_values = get_range(f"Responses!B2:K{MAX_ROW}") | |
df = pd.DataFrame(answers_values, columns=columns) | |
return df | |