|
import keras.backend as K |
|
import gradio as gr |
|
|
|
def psnr(y_true, y_pred): |
|
return -10*K.log(K.mean(K.flatten((y_true - y_pred))**2)) / np.log(10) |
|
|
|
from keras.models import load_model |
|
model = load_model("./MyNet.h5", custom_objects={'psnr': psnr, 'val_psnr': psnr}) |
|
|
|
def predict_input_image(img): |
|
|
|
img_4d=img.reshape(256,256,3) |
|
prediction=model.predict(img_4d)[0] |
|
return {flower_classes[i]: float(prediction[i]) for i in range(5)} |
|
|
|
image = gr.inputs.Image(shape=(256,256)) |
|
|
|
gr.Interface(fn=predict_input_image, inputs=image, outputs=image,interpretation='default').launch(debug='True') |
|
|