import keras.backend as K | |
import gradio as gr | |
import numpy as np | |
def psnr(y_true, y_pred): | |
return -10*K.log(K.mean(K.flatten((y_true - y_pred))**2)) / np.log(10) | |
from keras.models import load_model | |
model = load_model("./MyNet.h5", custom_objects={'psnr': psnr, 'val_psnr': psnr}) | |
# γ©γγγγι’ζ° | |
#def sepia(input_img): | |
# sepia_img = np.asarray(input_img) | |
# sepia_img = sepia_img.astype('float32') | |
# sepia_img = sepia_img / 255.0 | |
# sepia_img = model.predict(sepia_img) | |
# return sepia_img | |
def sepia(inp): | |
inp = inp.reshape((-1, 256, 256, 3)) | |
inp = np.asarray(inp) | |
inp = inp.astype('float32') | |
inp = inp / 255.0 | |
sepia_img = model.predict(inp) | |
return sepia_img | |
# γ·γ³γγ«γͺUIγδ½ζ | |
demo = gr.Interface( | |
fn=sepia, | |
inputs=gr.Image(shape=(256, 256)), | |
outputs="image" | |
).launch() | |
#image = gr.inputs.Image(shape=(256,256)) | |
#image = np.asarray(image) | |
#image = image.astype('float32') | |
#image = image / 255.0 | |
#decoded_imgs = model.predict(image) | |
#decoded_imgs.reshape(256,256,3) | |
#prediction=model.predict(img_4d)[0] | |
#gr.Interface(inputs=image, outputs=decoded_imgs,interpretation='default').launch(debug='True') | |