Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,28 @@
|
|
1 |
import keras.backend as K
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
|
|
|
|
|
|
|
|
4 |
|
5 |
def psnr(y_true, y_pred):
|
6 |
return -10*K.log(K.mean(K.flatten((y_true - y_pred))**2)) / np.log(10)
|
7 |
|
|
|
|
|
|
|
8 |
|
9 |
-
from keras.models import load_model
|
10 |
model = load_model("./MyNet.h5", custom_objects={'psnr': psnr, 'val_psnr': psnr})
|
11 |
|
12 |
-
# ラップする関数
|
13 |
-
#def sepia(input_img):
|
14 |
-
# sepia_img = np.asarray(input_img)
|
15 |
-
# sepia_img = sepia_img.astype('float32')
|
16 |
-
# sepia_img = sepia_img / 255.0
|
17 |
-
# sepia_img = model.predict(sepia_img)
|
18 |
-
# return sepia_img
|
19 |
-
|
20 |
def sepia(inp):
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
sepia_img = model.predict(
|
26 |
-
#sepia_img = sepia_img.reshape(256, 256)
|
27 |
sepia_img = sepia_img*255
|
|
|
28 |
return sepia_img
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
# シンプルなUIを作成
|
33 |
-
demo = gr.Interface(fn=sepia, inputs=gr.inputs.Image(256,256),outputs="image").launch()
|
34 |
-
|
35 |
-
|
36 |
-
#image = gr.inputs.Image(shape=(256,256))
|
37 |
-
#image = np.asarray(image)
|
38 |
-
#image = image.astype('float32')
|
39 |
-
#image = image / 255.0
|
40 |
-
#decoded_imgs = model.predict(image)
|
41 |
-
|
42 |
-
#decoded_imgs.reshape(256,256,3)
|
43 |
-
#prediction=model.predict(img_4d)[0]
|
44 |
-
|
45 |
-
|
46 |
-
#gr.Interface(inputs=image, outputs=decoded_imgs,interpretation='default').launch(debug='True')
|
|
|
1 |
import keras.backend as K
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
+
import random
|
5 |
+
from keras.models import load_model
|
6 |
+
import cv2
|
7 |
+
|
8 |
|
9 |
def psnr(y_true, y_pred):
|
10 |
return -10*K.log(K.mean(K.flatten((y_true - y_pred))**2)) / np.log(10)
|
11 |
|
12 |
+
random.seed(0) # 乱数の種を0にして,乱数を一様にする.
|
13 |
+
img_width = 256 # 画像の横画素数
|
14 |
+
img_height = 256 # 画像の縦画素数
|
15 |
|
|
|
16 |
model = load_model("./MyNet.h5", custom_objects={'psnr': psnr, 'val_psnr': psnr})
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def sepia(inp):
|
19 |
+
sepia_img = cv2.imread(inp)
|
20 |
+
sepia_img = np.asarray(sepia_img)
|
21 |
+
sepia_img = sepia_img.astype('float32')
|
22 |
+
sepia_img = sepia_img / 255.0
|
23 |
+
sepia_img = model.predict(sepia_img)
|
|
|
24 |
sepia_img = sepia_img*255
|
25 |
+
sepia_img = sepia_img.reshape(img_height, img_width, 3)
|
26 |
return sepia_img
|
27 |
|
28 |
+
demo = gr.Interface(fn=sepia, inputs=gr.inputs.Image(256,256),outputs="image").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|