Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import keras.backend as K
|
2 |
import gradio as gr
|
|
|
|
|
3 |
|
4 |
def psnr(y_true, y_pred):
|
5 |
return -10*K.log(K.mean(K.flatten((y_true - y_pred))**2)) / np.log(10)
|
@@ -8,6 +10,9 @@ from keras.models import load_model
|
|
8 |
model = load_model("./MyNet.h5", custom_objects={'psnr': psnr, 'val_psnr': psnr})
|
9 |
|
10 |
image = gr.inputs.Image(shape=(256,256))
|
|
|
|
|
|
|
11 |
decoded_imgs = model.predict(image)
|
12 |
|
13 |
#decoded_imgs.reshape(256,256,3)
|
|
|
1 |
import keras.backend as K
|
2 |
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
|
6 |
def psnr(y_true, y_pred):
|
7 |
return -10*K.log(K.mean(K.flatten((y_true - y_pred))**2)) / np.log(10)
|
|
|
10 |
model = load_model("./MyNet.h5", custom_objects={'psnr': psnr, 'val_psnr': psnr})
|
11 |
|
12 |
image = gr.inputs.Image(shape=(256,256))
|
13 |
+
image = np.asarray(image)
|
14 |
+
image = image.astype('float32')
|
15 |
+
image = image / 255.0
|
16 |
decoded_imgs = model.predict(image)
|
17 |
|
18 |
#decoded_imgs.reshape(256,256,3)
|