Spaces:
Sleeping
Sleeping
File size: 1,508 Bytes
faf0b67 f963ab3 faf0b67 f963ab3 faf0b67 f963ab3 d9b378b faf0b67 f963ab3 05558e5 f963ab3 ef92514 f963ab3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
import torch
import numpy as np
from PIL import Image
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
def process_image(image):
# prepare image for the model
encoding = feature_extractor(image, return_tensors="pt")
# forward pass
with torch.no_grad():
outputs = model(**encoding)
predicted_depth = outputs.predicted_depth
# interpolate to original size
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
).squeeze()
output = prediction.cpu().numpy()
formatted = (output * 255 / np.max(output)).astype('uint8')
img = Image.fromarray(formatted)
return img
return result
title = "Depth Estimation"
description = "Upload an image and get the depth visualization"
examples =[['house.jpg'], ['plane.webp'], ['room.webp']]
iface = gr.Interface(fn=process_image,
inputs=gr.components.Image(type="pil"),
outputs=gr.components.Image(type="pil", label="Predicted depth"),
title=title,
description=description,
examples=examples)
iface.launch(debug=True) |