import os, io import gradio as gr from transformers import pipeline # from PIL import Image # API_URL = "https://api-inference.huggingface.co/models/facebook/detr-resnet-50-panoptic" SECRET_TOKEN = os.getenv("SECRET_TOKEN") API_URL = "https://api-inference.huggingface.co/models/facebook/detr-resnet-50-dc5-panoptic" headers = {"Authorization": f'Bearer {SECRET_TOKEN}'} def rb(img): # initialiaze io to_bytes converter img_byte_arr = io.BytesIO() # define quality of saved array img.save(img_byte_arr, format='JPEG', subsampling=0, quality=100) # converts image array to bytesarray img_byte_arr = img_byte_arr.getvalue() return img_byte_arr estimator = pipeline("depth-estimation") result = estimator("http://images.cocodataset.org/val2017/000000039769.jpg") inputs = gr.inputs.Image(type="pil", label="Upload an image") demo = gr.Interface(fn=rb, inputs=inputs, outputs=result) #demo = gr.Interface(fn=rb, inputs=inputs, outputs=result["depth"]) demo.launch()